
 1  

Date:  April 2014 

Value Delivery Modeling Language 

FTF - Beta1 

__________________________________________________ 

OMG Document Number:  dtc/2014-04-05 

Standard document URL:  http://www.omg.org/spec/VDML/1.0 

Machine Consumable File(s):  

      http://www.omg.org/spec/VDML/20131201/vdml.xmi    

_________________________________________________ 

 

This OMG document replaces the specification document (bmi/2013-11-03, Alpha). It is an OMG 

Adopted Beta specification and is currently in the finalization phase. Comments on the content of this 

document are welcome, and should be directed to issues@omg.org by November 21, 2014.  

 

You may view the pending issues for this specification from the OMG revision issues web page 

http://www.omg.org/issues/. 

 

The FTF Recommendation and Report for this specification will be published on April 3, 2015. If you are 

reading this after that date, please download the available specification from the OMG Specifications 

Catalog. 

  

mailto:issues@omg.org
http://www.omg.org/issues/


 2  

Copyright © 2013, Cordys Corporation B.V. 

Copyright © 2013, CSC 

Copyright © 2014, Object Management Group 

 

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES 

The material in this document details an Object Management Group specification in accordance with the terms, 

conditions and notices set forth below. This document does not represent a commitment to implement any portion of 

this specification in any company's products. The information contained in this document is subject to change 

without notice. 

 

LICENSES 

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-

free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute 

copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed 

to have infringed the copyright in the included material of any such copyright holder by reason of having used the 

specification set forth herein or having conformed any computer software to the specification. 

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a 

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use 

this specification to create and distribute software and special purpose specifications that are based upon this 

specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: 

(1) both the copyright notice identified above and this permission notice appear on any copies of this specification; 

(2) the use of the specifications is for informational purposes and will not be copied or posted on any network 

computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) 

no modifications are made to this specification. This limited permission automatically terminates without notice if 

you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the 

specifications in your possession or control.  

 

PATENTS 

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may 

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which 

a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or 

scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. 

Prospective users are responsible for protecting themselves against liability for infringement of patents. 

 

GENERAL USE RESTRICTIONS 

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications 

regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. 

No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, 

electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--

without permission of the copyright owner. 

 

DISCLAIMER OF WARRANTY 

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY 

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES 

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO 

THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, 



 3  

IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR 

PURPOSE OR USE.  IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE 

COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, 

INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING 

LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN 

CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF 

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  

The entire risk as to the quality and performance of software developed using this specification is borne by you. This 

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification. 

 

RESTRICTED RIGHTS LEGEND 

Use, duplication or disclosure by the U.S. Government  is subject to the restrictions set forth in subparagraph (c) (1) 

(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph 

(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as 

specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 

12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners 

are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, 

Needham, MA 02494, U.S.A. 

 

TRADEMARKS 

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are 

registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified 

Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA 

logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language 

(IDL)™ , and OMG SysML™ are trademarks of the Object Management Group. All other products or company 

names mentioned are used for identification purposes only, and may be trademarks of their respective owners. 

 

COMPLIANCE 

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its 

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer 

software to use certification marks, trademarks or other special designations to indicate compliance with these 

materials. 

Software developed under the terms of this license may claim compliance or conformance with this specification if 

and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the 

specification. Software developed only partially matching the applicable compliance points may claim only that the 

software was based on this specification, but may not claim compliance or conformance with this specification. In 

the event that testing suites are implemented or approved by Object Management Group, Inc., software developed 

using this specification may claim compliance or conformance with the specification only if the software 

satisfactorily completes the testing suites. 

OMG’s Issue Reporting Procedure 

 

All OMG specifications are subject to continuous review and improvement. As part of this process we 

encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing 

the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a 

Bug/Issue (http://www.omg.org/report_issue.htm) 

  

http://www.omg.org/report_issue.htm


 4  

Contents 
Table of Figures ........................................................................................................................................ 9 

Table of Tables ....................................................................................................................................... 11 

Preface ........................................................................................................................................................ 12 

1 Scope ................................................................................................................................................... 14 

2 Conformance ....................................................................................................................................... 17 

2.1 Full VDML Conformance ........................................................................................................... 17 

2.2 VDML Metamodel Conformance ............................................................................................... 17 

2.3 VDML Collaboration Modeling Conformance ........................................................................... 17 

3 References ........................................................................................................................................... 18 

3.1 Normative References ................................................................................................................. 18 

3.2 Non-Normative References......................................................................................................... 18 

4 Terms and Definitions ......................................................................................................................... 22 

5 Symbols............................................................................................................................................... 23 

6 Additional Information ....................................................................................................................... 24 

6.1 Acknowledgements ..................................................................................................................... 24 

6.1.1 Submitting Organizations ................................................................................................... 24 

6.1.2 Participants .......................................................................................................................... 24 

6.1.3 Supporting organizations .................................................................................................... 24 

6.2 IPR and Patents ........................................................................................................................... 25 

6.3 Guide to the Specification ........................................................................................................... 25 

7 VDML Metamodel .............................................................................................................................. 26 

7.1 Overview of VDML .................................................................................................................... 26 

7.1.1 VDML Model ..................................................................................................................... 27 

7.1.2 Value and Value Proposition .............................................................................................. 27 

7.1.3 Capability Definition........................................................................................................... 28 

7.1.4 Collaboration ....................................................................................................................... 29 

7.1.5 Community ......................................................................................................................... 29 

7.1.6 Business Network ............................................................................................................... 30 

7.1.7 Organization Unit (Org Unit) .............................................................................................. 31 

7.1.8 Capability Method............................................................................................................... 32 

7.1.9 Activity ............................................................................................................................... 34 

7.1.10 Port ...................................................................................................................................... 37 



 5  

7.1.11 Resources and stores ........................................................................................................... 37 

7.1.12 Measures ............................................................................................................................. 38 

7.1.13 Scenarios and contexts ........................................................................................................ 39 

7.1.14 Staff collaborations ............................................................................................................. 42 

7.1.15 Model integration ................................................................................................................ 43 

7.2 VDML Class definitions ............................................................................................................. 45 

7.2.1 Collaboration and Value Creation ....................................................................................... 45 

7.2.1.1 Collaborations and participants ..................................................................................................... 45 

7.2.1.1.1 Actor Class ........................................................................................................................... 46 

7.2.1.1.2 Person Class ........................................................................................................................ 46 

7.2.1.1.3 Collaboration Class ............................................................................................................. 46 

7.2.1.1.4 Participant Class (Abstract) ................................................................................................ 47 

7.2.1.1.5 Role Class............................................................................................................................. 48 

7.2.1.2 Activity networks .......................................................................................................................... 49 

7.2.1.2.1 Activity Class ........................................................................................................................ 49 

7.2.1.2.2 ResourceUse Class ............................................................................................................. 51 

7.2.1.2.3 Assignment Class ................................................................................................................ 53 

7.2.1.2.4 DeliverableFlow Class ........................................................................................................ 54 

7.2.1.2.5 BusinessItem Class ............................................................................................................. 55 

7.2.1.2.6 Store Class ........................................................................................................................... 56 

7.2.1.2.7 Pool Class ............................................................................................................................. 57 

7.2.1.3 ValueAdds and ValuePropositions ............................................................................................... 58 

7.2.1.3.1 ValueProposition Class ....................................................................................................... 58 

7.2.1.3.2 ValuePropositionComponent Class .................................................................................. 60 

7.2.1.3.3 ValueAdd Class ................................................................................................................... 61 

7.2.1.3.4 ValueElement Class (Abstract) .......................................................................................... 62 

7.2.2 Collaboration Sub-Types .................................................................................................... 63 

7.2.2.1 BusinessNetworks ......................................................................................................................... 63 

7.2.2.1.1 BusinessNetwork Class ...................................................................................................... 63 

7.2.2.1.2 Party Class ........................................................................................................................... 63 

7.2.2.2 Communities ................................................................................................................................. 64 

7.2.2.2.1 Community Class ................................................................................................................. 64 

7.2.2.2.2 Member Class ...................................................................................................................... 64 

7.2.2.3 OrgUnits and Capabilities ............................................................................................................. 64 

7.2.2.3.1 OrgUnit Class ....................................................................................................................... 65 



 6  

7.2.2.3.2 Position Class ....................................................................................................................... 66 

7.2.2.3.3 CapabilityOffer Class .......................................................................................................... 66 

7.2.2.3.4 ReleaseControl Class ......................................................................................................... 67 

7.2.2.4 CapabilityMethods ........................................................................................................................ 68 

7.2.2.4.1 CapabilityMethod Class ...................................................................................................... 68 

7.2.3 Models and Scenarios ......................................................................................................... 69 

7.2.3.1 ValueDeliveryModels ................................................................................................................... 69 

7.2.3.1.1 ValueDeliveryModel Class ................................................................................................. 70 

7.2.3.2 Scenarios and AnalysisContexts ................................................................................................... 71 

7.2.3.2.1 AnalysisContext Class (Abstract) ...................................................................................... 72 

7.2.3.2.2 Scenario Class ..................................................................................................................... 73 

7.2.3.2.3 DelegationContext Class .................................................................................................... 74 

7.2.4 Core Elements ..................................................................................................................... 74 

7.2.4.1 VdmlElements ............................................................................................................................... 74 

7.2.4.1.1 VdmlElement Class (Abstract) ........................................................................................... 75 

7.2.4.1.2 Attribute Class ...................................................................................................................... 75 

7.2.4.1.3 Annotation Class .................................................................................................................. 76 

7.2.4.1.4 MeasurableElement Class (Abstract) ............................................................................... 76 

7.2.4.1.5 MeasuredCharacteristic Class ........................................................................................... 76 

7.2.4.2 Expressions ................................................................................................................................... 76 

7.2.4.2.1 Expression Class ................................................................................................................. 77 

7.2.4.2.2 Operand Class ..................................................................................................................... 77 

7.2.4.3 PortContainers ............................................................................................................................... 77 

7.2.4.3.1 Port Class (Abstract) ........................................................................................................... 78 

7.2.4.3.2 OutputPort Class ................................................................................................................. 79 

7.2.4.3.3 InputPort Class ..................................................................................................................... 80 

7.2.4.3.4 PortContainer Class (Abstract) .......................................................................................... 80 

7.2.4.4 PortDelegations ............................................................................................................................. 80 

7.2.4.4.1 PortDelegation Class (Abstract) ........................................................................................ 81 

7.2.4.4.2 InputDelegation Class ......................................................................................................... 81 

7.2.4.4.3 OutputDelegation Class ...................................................................................................... 82 

7.2.5 Libraries .............................................................................................................................. 82 

7.2.5.1 BusinessItemLibrary ..................................................................................................................... 82 

7.2.5.1.1 BusinessItemLibrary Class ................................................................................................. 83 

7.2.5.1.2 BusinessItemDefinition Class ............................................................................................ 83 



 7  

7.2.5.1.3 BusinessItemCategory Class ............................................................................................. 84 

7.2.5.1.4 BusinessItemLibraryElement Class (Abstract) ................................................................ 85 

7.2.5.2 ValueLibrary ................................................................................................................................. 85 

7.2.5.2.1 ValueLibrary Class .............................................................................................................. 85 

7.2.5.2.2 ValueDefinition Class .......................................................................................................... 86 

7.2.5.2.3 ValueCategory Class .......................................................................................................... 86 

7.2.5.3 CapabilityLibrary .......................................................................................................................... 87 

7.2.5.3.1 CapabilityLibrary Class ....................................................................................................... 87 

7.2.5.3.2 CapabilityDefinition Class ................................................................................................... 88 

7.2.5.3.3 CapabilityCategory Class ................................................................................................... 89 

7.2.5.3.4 Capability Class (Abstract) ................................................................................................. 89 

7.2.5.3.5 CapabilityDependency Class ............................................................................................. 90 

7.2.5.4 PracticeLibrary .............................................................................................................................. 91 

7.2.5.4.1 PracticeLibrary Class .......................................................................................................... 91 

7.2.5.4.2 PracticeDefinition Class ...................................................................................................... 92 

7.2.5.4.3 PracticeCategory Class ...................................................................................................... 92 

7.2.5.5 RoleLibrary ................................................................................................................................... 93 

7.2.5.5.1 RoleLibrary Class ................................................................................................................ 93 

7.2.5.5.2 RoleDefinition Class ............................................................................................................ 93 

7.2.5.5.3 RoleCategory Class ............................................................................................................ 94 

7.2.6 Integration with SMM (Structured Metrics Metamodel) .................................................... 94 

7.2.6.1 Packages ........................................................................................................................................ 94 

7.2.6.2 SMM Main Concepts .................................................................................................................... 95 

8 Notation............................................................................................................................................... 97 

8.1 General ........................................................................................................................................ 97 

8.2 Role Collaboration ...................................................................................................................... 97 

8.3 ValueProposition Exchange ........................................................................................................ 99 

8.4 Activity Network ...................................................................................................................... 100 

8.5 Collaboration Structure ............................................................................................................. 106 

8.6 CapabilityLibrary ...................................................................................................................... 108 

8.7 Capability Heatmap .................................................................................................................. 110 

8.8 Capability Management ............................................................................................................ 110 

8.9 Measurement Dependency ........................................................................................................ 114 

Annexes .................................................................................................................................................... 116 



 8  

Annex A:  Glossary ................................................................................................................................... 117 

Annex B:  Alignment with Existing Business Modeling Techniques ....................................................... 121 

Value Networks .................................................................................................................................... 121 

REA (Resources Events Agents) .......................................................................................................... 123 

e
3
value ................................................................................................................................................... 126 

Capability Maps .................................................................................................................................... 128 

Value Stream ......................................................................................................................................... 129 

Business Model ..................................................................................................................................... 130 

Lindgren ............................................................................................................................................ 130 

Osterwalder ....................................................................................................................................... 131 

Possession, Ownership, Availability (POA) ......................................................................................... 133 

VDML Support for BMM Strategic Planning ...................................................................................... 135 

VDML Support for Balanced Scorecard and Strategy Map ................................................................. 140 

VDML Relationship to BPMN ............................................................................................................. 142 

Annex C: Use Cases .................................................................................................................................. 146 

 

  



 9  

Table of Figures 
 

Figure 1 - VDML Viewpoints ..................................................................................................................... 26 

Figure 2 - Capability Offers ........................................................................................................................ 33 

Figure 3 - Activity structure ........................................................................................................................ 35 

Figure 4 - Two uses of a collaboration ....................................................................................................... 40 

Figure 5 - Scenarios and context trees ........................................................................................................ 41 

Figure 6 - Collaborations ............................................................................................................................ 46 

Figure 7 - Activities .................................................................................................................................... 49 

Figure 8 - Assignments ............................................................................................................................... 53 

Figure 9 - DeliverableFlows ....................................................................................................................... 54 

Figure 10 - BusinessItems ........................................................................................................................... 55 

Figure 11 - Stores ........................................................................................................................................ 56 

Figure 12 - Values and ValuePropositions ................................................................................................. 58 

Figure 13 -  BusinessNetworks ................................................................................................................... 63 

Figure 14 - Communities ............................................................................................................................ 64 

Figure 15 - OrgUnits and Capabilities ........................................................................................................ 65 

Figure 16 - CapabilityMethods ................................................................................................................... 68 

Figure 17 - ValueDeliveryModels .............................................................................................................. 70 

Figure 18 - Scenarios and AnalysisContexts .............................................................................................. 71 

Figure 19 - VdmlElements .......................................................................................................................... 75 

Figure 20 - Expressions .............................................................................................................................. 77 

Figure 21 - PortContainers .......................................................................................................................... 78 

Figure 22 - PortDelegations ........................................................................................................................ 81 

Figure 23 - BusinessItemLibraries .............................................................................................................. 82 

Figure 24 - ValueLibraries .......................................................................................................................... 85 

Figure 25 - CapabilityLibraries ................................................................................................................... 87 

Figure 26 - PracticeLibraries ...................................................................................................................... 91 

Figure 27 - RoleLibraries ............................................................................................................................ 93 

Figure 28 - VDML Metamodel package ..................................................................................................... 95 

Figure 29 - SMM main concepts................................................................................................................. 95 

Figure 30 - Role shape as oval .................................................................................................................... 97 

Figure 31 - Role shape with expand button ................................................................................................ 97 

Figure 32 - DeliverableFlow shape for Tangible ........................................................................................ 98 

Figure 33 - DeliverableFlow shape for Intangible ...................................................................................... 98 

Figure 34 - DeliverableFlow for Tangible, connecting two Roles .............................................................. 98 

Figure 35 - Role Collaboration diagram (BusinessNetwork example) ....................................................... 99 

Figure 36 - ValueProposition shape ............................................................................................................ 99 

Figure 37 - Role providing a ValueProposition .......................................................................................... 99 

Figure 38 - Role receiving a ValueProposition ........................................................................................... 99 

Figure 39 - ValueProposition Exchange diagram (example) .................................................................... 100 

Figure 40 - Swim-lane shape for Role (in Activity Network diagram) .................................................... 100 

Figure 41 - Activity shape ......................................................................................................................... 100 



 10  

Figure 42 - Activity shape, with expand button ........................................................................................ 100 

Figure 43 - Store shape ............................................................................................................................. 101 

Figure 44 - Pool shape .............................................................................................................................. 101 

Figure 45 - Connector shape for DeliverableFlow (in Activity Network diagram) .................................. 101 

Figure 46 - Connector shape for internalPortDelegation (in Activity Network diagram) ........................ 101 

Figure 47 - Shape of OutputPort, on boundary of Activity....................................................................... 102 

Figure 48 - Shape of OutputPort, with Condition, on boundary of Activity............................................. 102 

Figure 49 - Shape of OutputPort, with ValueAdd, on boundary of Activity OutputPort ......................... 102 

Figure 50 - Shape of OutputPort, with ValueAdd and Condition, on boundary of Activity .................... 103 

Figure 51 - Shape of InputPort, on boundary of Activity ......................................................................... 103 

Figure 52 - Shape of InputPort, with Condition, on boundary of Activity ............................................... 103 

Figure 53 - Shape of InputPort, receiving roleResource, on boundary of Activity .................................. 103 

Figure 54 - Shape of InputPort, receiving role Resource, and with Condition, on boundary of Activity . 103 

Figure 55 - Shape of OutputPort, on boundary of Store ........................................................................... 103 

Figure 56 - Shape of OutputPort, with Condition, on boundary of Store ................................................. 103 

Figure 57 - Shape of OutputPort, with ValueAdd, on boundary of Store ................................................. 103 

Figure 58 - Shape of OutputPort, with ValueAdd and Condition, on boundary of Store ......................... 104 

Figure 59 - Shape of InputPort, on boundary of Store .............................................................................. 104 

Figure 60 - Shape of InputPort, with Condition, on boundary of Store .................................................... 104 

Figure 61 - Shape of Collaboration InputPort, connected to internalPortDelegation ............................... 104 

Figure 62 - Shape of Collaboration OutputPort, connected to internalPortDelegation ............................ 104 

Figure 63 - Shape of Collaboration OutputPort, with ValueAdd, and connected to internalPortDelegation

 .................................................................................................................................................................. 105 

Figure 64 - Activity Network diagram (simple example) ......................................................................... 105 

Figure 65 - Activity Network diagram (simple example) ......................................................................... 105 

Figure 66 - RoleCollaboration and ActivityNetwork as synchronized views (example).......................... 106 

Figure 67 - Collaboration shape ................................................................................................................ 106 

Figure 68 - BusinessNetwork shape.......................................................................................................... 106 

Figure 69 - OrgUnit shape ........................................................................................................................ 106 

Figure 70 - CapabilityMethod shape (in Collaboration Structure and Capability Management diagrams)

 .................................................................................................................................................................. 107 

Figure 71 - Community shape ................................................................................................................... 107 

Figure 72 - Role containment connector ................................................................................................... 107 

Figure 73 - Collaboration structure, with Role of parent Collaboration assigned to sub-Collaboration... 107 

Figure 74 - Role Assignment connector ................................................................................................... 108 

Figure 75 - Actor assigned to Role ........................................................................................................... 108 

Figure 76 - Collaboration Structure diagram (example) ........................................................................... 108 

Figure 77 - Capability shape (in CapabilityLibrary diagram) ................................................................... 109 

Figure 78 - Capability hierarchy ............................................................................................................... 109 

Figure 79 - Capability shape with expand button (in CapabilityLibrary diagram) ................................... 109 

Figure 80 - Expanded parent Capability, with sub-Capability .................................................................. 109 

Figure 81 - CapabilityLibrary diagram (example) .................................................................................... 110 

Figure 82 - Capabilities with heatIndex about HeatThreshold (in Capability Heatmap) .......................... 110 

Figure 83 - CapabilityOffer shape ............................................................................................................ 111 



 11  

Figure 84 - Shape of connector between CapabilityOffer and a capabilityResource or method .............. 111 

Figure 85 - CapabilityOffers on boundary of OrgUnit, with expand button (in: Capability Management 

diagram) .................................................................................................................................................... 111 

Figure 86 - OrgUnit expanded (in: Capability Management diagram) ..................................................... 112 

Figure 87 - CapabilityOffers of OrgUnit with capabilityResource and method from other OrgUnit ....... 112 

Figure 88 - CapabilityOffers of OrgUnit with capabilityResource and method from other OrgUnit (not 

shown) ....................................................................................................................................................... 113 

Figure 89 - Connector shape for dependency of CapabilityMethod on other CapabilityOffer(s) ............ 113 

Figure 90 - Dependencies of CapabilityMethod on CapabilityOffers of methodOwner and other OrgUnits

 .................................................................................................................................................................. 113 

Figure 91 - Capability Management diagram (example) .......................................................................... 114 

Figure 92 - MeasuredCharacteristic shape (in Measurement Dependency diagram) ............................... 114 

Figure 93 - Shape of MeasurementRelationship, with “positive” influence ............................................. 115 

Figure 94 - Shape of MeasurementRelationship, with “negative” influence ............................................ 115 

Figure 95 - Measurement Dependency diagram (example) ...................................................................... 115 

Figure 96 - Value Network Map or Graph ................................................................................................ 122 

Figure 97 - Example of an REA Model .................................................................................................... 124 

Figure 98 - Example of an e
3
value Model ................................................................................................ 127 

Figure 99 - Capability Heat Map .............................................................................................................. 129 

Figure 100 - The Business Model Cube (Lindgren) ................................................................................. 130 

Figure 101 - The Business Model Canvas (Osterwalder) ......................................................................... 132 

Figure 102 - Example of a POA Model .................................................................................................... 133 

Figure 103 - Overview of BMM ............................................................................................................... 136 

Figure 104 - Strategic planning process .................................................................................................... 137 

Figure 105 - VDMLmodels for BSC/SM ................................................................................................. 140 

Figure 106 - Modeling transformation phases .......................................................................................... 142 

 

Table of Tables 

 
Table 1 -  Business Challenges and VDML Solutions ................................................................................ 14 

Table 2 - Mapping of VNA Concepts to VDML Concepts ...................................................................... 122 

Table 3 - Mapping of REA Concepts to VDML Concepts ....................................................................... 125 

Table 4 - Mapping of e
3
value Concepts to VDML Concepts ................................................................... 127 

Table 5 - Mapping of Business Model Cube Concepts to VDML Concepts ............................................ 130 

Table 6 - Mapping of Business Model Canvas Concepts to VDML Concepts......................................... 132 

Table 7 - Mapping of POA Concepts to VDML Concepts ....................................................................... 134 

  



 12  

Preface 

OMG 

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer 

industry standards consortium that produces and maintains computer industry specifications for interoperable, 

portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes 

Information Technology vendors, end users, government agencies, and academia.  

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s 

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle 

approach to enterprise integration that covers multiple operating systems, programming languages, middleware and 

networking infrastructures, and software development environments. OMG’s specifications include: UML® 

(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common 

Warehouse Metamodel); and industry-specific standards for dozens of vertical markets. 

More information on the OMG is available at http://www.omg.org/. 

 

OMG Specifications  

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG 

Specifications are available from the OMG website at: 

http://www.omg.org/spec 

Specifications are organized by the following categories: 

Business Modeling Specifications 

Middleware Specifications 

•  CORBA/IIOP 

•  Data Distribution Services 

•  Specialized CORBA  

IDL/Language Mapping Specifications 

Modeling and Metadata Specifications 

•  UML, MOF, CWM, XMI 

•  UML Profile 

Modernization Specifications 

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface 

Specifications 

•  CORBAServices 

•  CORBAFacilities 

http://www.omg.org/


 13  

OMG Domain Specifications 

CORBA Embedded Intelligence Specifications  

CORBA Security Specifications 

 

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing 

OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and 

PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management 

Group, Inc. at: 

 

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org 

 

Typographical Conventions 

The type styles shown below are used in this document to distinguish programming statements from ordinary 

English. However, these conventions are not used in tables or section headings where no distinction is necessary. 

Helvetica/Arial - 10 pt. Bold:

Courier/Courier New - 10 pt. Bold:

Helvetica/Arial - 10 pt:

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, 

specification, or other publication. 

  



 14  

1 Scope 
The purpose of VDML is to provide a standard modeling language for analysis and design of the 

operation of an enterprise with particular focus on the creation and exchange of value. It provides an 

abstraction of the operation of an enterprise that is appropriate for business executives, along with 

representation of supporting detail for business analysts to link strategy and business models to the 

activities, roles, and capabilities that run the enterprise.  The target users are business people—executives, 

business architects, analysts and managers. Information systems analysts and designers may use VDML 

models as specifications for the design of supporting information systems. 

VDML is designed to address several critical business challenges: 1) It creates a robust way to model 

both tangible and intangible value flows 2) It provides the capacity to model complex collaborations and 

business networks 3) It provides a flexible way to model business activities to more readily support 

continuous transformation in environments of high variability and 4) It supports more effective shared 

capabilities optimization and deployment.  Table 1, below, highlights these challenges and VDML 

solutions. 

Table 1 -  Business Challenges and VDML Solutions 

Business Challenge How VDML Meets the Challenge 

Model both tangible and intangible 

value flows. 
• Models creation and exchange of both tangible (formal) and 

intangible (informal or ad hoc) deliverables and values 

exchanged between roles and their benefits. 

• Compatible with intangible asset or resource management 

• Can model both proposed and realized value 

• Supports value stream analysis to address customer values 

Model complex collaborations and 

business networks 
• Models traditional organizations 

• Models communities, informal collaborations and business 

networks 

• Allows for drill down for analysis of performance and 

responsibility and considering alternative demand scenarios. 

• Clarifies responsibilities of roles in collaborations 

• Provides a basis for using network analytics to assess business 

models and value flows. 

Model business transformations in 

environments of high variability 
• Provides a higher level of abstraction than business processes for 

an enterprise perspective on transformation plans and priorities. 

• Models multiple business entities and activities as an ecosystem 

• Provides operational definition of critical business frameworks 

(Osterwalder, balanced scorecard, value stream) 

• Enables shared understanding of business requirements for 

business transformation and support from BPM and IT 

• Provides a way to model non routine, highly variable or non 

standardized activities 

Model shared capabilities and their 

deployment across multiple 

activities and lines of business 

• Models organizational responsibilities and performance of 

capabilities in multiple contexts. 

• Provides a tighter linkage to value creation 

• Helps to more effectively identify, build, change and deploy 



 15  

shared capabilities across multiple collaborations, business units, 

and activities. 

 

Given these challenges, VDML is designed to bring together the organization or network structure with 

the creation and exchange of value and defines the capabilities that produce value. In particular, the 

VDML metamodel has been developed to support value chain, value stream and capability analysis, and 

has been refined to support Value Network Analysis (VNA), e
3
value modeling, REA (Resource Event 

Agent) analysis and an owner/investor business model.   Further, it is designed to support modeling of the 

human collaborations and role-based interactions both within organizations and within networks that are 

required to support value delivery. VDML can demonstrate the management of resources, assignment of 

people and roles, exchanges with business partners and performance measures that help identify problems 

and opportunities to improve the business.   

Central to VDML is the concept of value.  Value is a measurable factor of benefit delivered to a recipient 

in association with a deliverable.  Examples of value include the fitness of a product for a purpose, a 

measure of product reliability, a probability of production defects, a commitment to future delivery of 

another deliverable, a measure of product or brand prestige, information that provides a business 

advantage, or any other feature or benefit that would affect the desirability of a product, service or 

economic exchange.  VDML is designed to support the optimization of stakeholder value for both internal 

and external facing business activities. VDML supports value measurement from both operational and 

recipient satisfaction perspectives. It supports modeling and analysis of both tangible and intangible 

business value and is compatible with resource management frameworks utilizing intangible assets and 

well as traditional financial assets and resources.  

Also central to VDML is the ability to model collaborative business relationships and role based business 

networks. At the level of business partner interactions, VDML can represent the net exchange of value 

between business entities (e.g., companies, agencies or consumers) or go into the detail of transactional 

exchanges for achieving exchange agreements and managing the exchange of economic resources.  These 

value exchange models can support analysis of the overall effect of exchanges between multiple 

enterprises that enable each of the participants to realize a perceived net gain to sustain the relationship.  

Such analyses also can be important for understanding the costs, risks, and delays of these transactions 

and the viability of the business model.  

For analysis of business operations, VDML supports a perspective of value-driven business design by 

focusing on the activities and flow of deliverables that produce products or services and the delivery of 

tangible and intangible values.  The delivery of value can focus on end customers and external 

stakeholders as well as value delivered to internal customers or the enterprise entity.  

VDML can provide a framework and generate requirements for the design of business processes, but it 

provides a more abstract view than BPMN and other process modeling tools by focusing on the 

consumption and production of deliverables and the statistical performance and contributions of value by 

activities including cost, quality and duration.  As such it provides a vital link between business strategy 

and enterprise value models and business processes. However, VDML avoids the detail of the operational 

control aspects of business processes.  The focus is on delivery of value and the means to that end.   



 16  

VDML scales from key operational activities to full industry level business models and large scale 

business networks. It is appropriate for commercial and non-commercial endeavors as well as government 

agencies. A VDML model can extend from product concept to full commercialization, delivery and 

customer support.  It can support the capture of measurements to assess the impact of performance of 

specific activities on the values of end products or services.  It aligns these concepts with business 

capabilities that can be managed, shared and optimized from an enterprise perspective, and it links all of 

these with the responsible people, collaborations, and organizations that manage and perform these 

capabilities. 

The measurements of a VDML model represent statistical figures for delivery of a product or service, for 

a market segment, a product line, a product mix or a line of business or other operational variations.  

Where a line of business involves similar but different product configurations, the measurements can 

represent a particular product mix.  Different scenarios may be used to analyze different products or 

product mixes that, for the most part, use the same capabilities.   

More detailed analysis that reflects variability of products and operating circumstances would require 

simulation.  VDML does not directly support simulation, but a VDML model can capture the fundamental 

data needed to support simulation such as system dynamics, Monte Carlo simulation and discrete event 

simulation. Changes to a VDML model would then be directly incorporated into the simulation and 

results can be incorporated to update or create a VDML scenario. While these simulation techniques are 

outside the scope of VDML, it is expected that some implementers may want to include such capabilities 

with their products.  The design of the VDML metamodel is intended to be compatible with extensions to 

include simulation. 

This specification includes a limited, normative, graphical notation.  It is expected that notation will 

evolve as users identify new ways to view their robust models.  Implementations may implement non-

normative views that are familiar to users of existing techniques.  It is expected that the graphical displays 

will be complemented by tabular displays, some of which are suggested by the use cases. 

This specification does not define the various measurements applicable to performance and value delivery 

analysis.  It is expected that these will be domain/industry-dependent and that industry or professional 

groups will establish shared libraries to be imported as a basis for models in that industry.  This 

specification incorporates the SMM (Structured Metrics Metamodel) specification to represent the 

measure libraries and the measurable properties of model elements. 

The scope of a particular VDML model (a model created using VDML) will depend very much on the 

purpose of the model.  The expectation is that a VDML model can be applied to address specific 

problems, but then can be maintained and grown to provide a sustainable, integrated abstraction of the 

operation of the enterprise so that little need be added to the model to address problems and opportunities 

that are encountered in the future. 

  



 17  

2 Conformance 

2.1 Full VDML Conformance 
A conformant implementation must support the normative graphical notation and must import and export 

models that are compliant with this metamodel and with the SMM (Structured Metrics Metamodel).   

Elements that are required only to support simulation are optional including the Calendar Service. 

2.2 VDML Metamodel Conformance 
A product can claim “VDML Metamodel Conformance” if it can import and export XMI that is consistent 

with the VDML metamodel and product literature clearly defines how it limits the modeling capability 

compared to full implementation of the metamodel and notation. 

2.3 VDML Collaboration Modeling Conformance 
Participants, collaborations, roles, actors and their sub-types of the VDML metamodel can be 

implemented for modeling organizational structures and relationships. Conformance with import/export 

of this sub-set of the VDML metamodel may be claimed as conformance with VDML Collaboration 

Modeling 

  



 18  

3 References 

3.1 Normative References 
 

BMM, Business Motivation Model, version 1.1, May 2010, OMG Document Number: ptc/2010-05-01, 
http://www.omg.org/spec/BMM/1.1 . 
 
BPMN, Business Process Model and Notation, version 2.0, June 2010, OMG Document Number: 

dtc/2010-06-05, http://www.omg.org/spec/BPMN/2.0 . 

 

SMM, Structured Metrics Metamodel, Version 1.0, January 2012, OMG Document Number: ptc/2012-

01-05, http://www.omg.org/spec/SMM/1.0 . 

SoaML, SOA Modeling Language, Version 1.0, Release Date: March 2012, 

http://www.omg.org/spec/SoaML/1.0/ . 

3.2 Non-Normative References 
 

Allee, V., The Future of Knowledge: Increasing Prosperity through Value Networks, Butterworth-

Heinemann 2003. 

Allee, V., Value Network Analysis and Value Conversion of Tangible and Intangible Assets, Journal of 

Intellectual Capital, Volume 9, issue 1, pp 5-24, January 2008, http://www.vernaallee.com/images/VAA-

VNAandValueConversionJIT.pdf . 

Allee, V., Value Networks and the True Nature of Collaboration, ValueNet Works, 2011, 

http://www.valuenetworksandcollaboration.com. 

Ballantyne, D., Varey, R.J., Frow, P. and Payne, A., Service-dominant logic and value propositions: Re-

examining our mental models, Otago Forum 2, Paper no: 5, 2008, 

http://www.business.otago.ac.nz/marketing/events/OtagoForum/Final%20forum%20papers/Otago%20Fo

rum%20Paper%205_Ballantyne.pdf . 

BPMM, Business Process Maturity Model, Version 1.0, Object Management Group, Release Date: June 

2008, http://www.omg.org/spec/BPMM/1.0/PDF/ . 

BPMN, Business Process Model and Notation, Version 2.0, Object Management Group, Release Date: 

January 2011, http://www.omg.org/spec/BPMN/2.0/ . 

Brodie, L. and Gilb, T., Values for Value, AgileRecord, October 2010, http://www.gilb.com/dl448 . 

Cummins, Fred A., Building the Agile Enterprise with SOA, BPM and MBM, Morgan Kaufman, 2009. 

Cummins, Fred A., Building the Agile Enterpise (blog) includes several posts on VDML, 2011-2013. 

Cummins, Fred A., and Henk de Man, VDML support for the Business Architecture Guild BizArch 

Viewpoint, OMG document number bmi/2013-11-02, November, 2013, http://www.omg.org/cgi-

bin/doc?bmi/2013-11-02 . 

http://www.omg.org/spec/BMM/1.1
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/SMM/1.0
http://www.omg.org/spec/SoaML/1.0
http://www.vernaallee.com/images/VAA-VNAandValueConversionJIT.pdf
http://www.vernaallee.com/images/VAA-VNAandValueConversionJIT.pdf
http://www.valuenetworksandcollaboration.com/
http://www.business.otago.ac.nz/marketing/events/OtagoForum/Final%20forum%20papers/Otago%20Forum%20Paper%205_Ballantyne.pdf
http://www.business.otago.ac.nz/marketing/events/OtagoForum/Final%20forum%20papers/Otago%20Forum%20Paper%205_Ballantyne.pdf
http://www.omg.org/spec/BPMM/1.0/PDF/
http://www.omg.org/spec/BPMN/2.0/
http://www.gilb.com/dl448
http://www.omg.org/cgi-bin/doc?bmi/2013-11-02
http://www.omg.org/cgi-bin/doc?bmi/2013-11-02


 19  

Cummins, Fred A., and Henk de Man, Analysis of the Relationships between VDML and BPMN, OMG 

document number bmi/2013-11-01, November, 2013, http://www.omg.org/cgi-bin/doc?bmi/2013-11-01 . 

Gane, C. and Sarson, T, Structured Systems Analysis: Tools and Techniques, Prentice-Hall Software 

Series, Prentice-Hall, Englewood Cliffs, New Jersey, 1979. 

Geerts, G. L. and W. E. McCarthy, An Ontological Analysis of the Primitives of the Extended REA 

Enterprise Information Architecture. The International Journal of Accounting Information Systems,  

March 2002. 

Gilb, T., Value Delivery in Systems Engineering, October 2007, Published and used by INCOSE with 

permission, http://www.gilb.com/dl137 

Gilb, T. and Gilb, K., Done should mean value delivered to Stakeholders, AgileRecord, October 2011, 

http://www.gilb.com/dl484 . 

GoldSim, Summary of Major New Features and Changes, Version 10.1, GoldSim Technology Group, 

February 2010, http://www.goldsim.com/downloads/Documents/Version101Summary.pdf . 

GoldSim, Probabilistic Simulation Environment, User's Guide, Version 10.5, GoldSim Technology 

Group, December 2010, http://www.goldsim.com/downloads/Documents/Version101Summary.pdf . 

Gordijn, J. and Akkermans, H., Value based requirements engineering: Exploring innovative e-commerce 

ideas. In Requirements Engineering Journal, Vol. 8(2):114-134, 2003,  

http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2003e3value.pdf, or a popular version of it: 

http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2001e3value.pdf . 

Harmon, Paul, Business Process Change: A Guide for Business Managers and BPM and Six Sigma 

Professionals, Morgan Kaufman, 2007. 

Hruby P., Kiehn J. And Scheller C.: Model-Driven Design Using Business Patterns, Springer-Verlag, 

2006. 

IBM, Component Business Modeling, http://www.haifa.ibm.com/projects/software/cbm/index.html . 

ITIL, Service Design, ITIL Version 3, August 2011, http://www.best-management-

practice.com/Publications-Library/IT-Service-Management-ITIL/ITIL-2011-Edition/Service-Design/ . 

Johnson, M. W., Christensen, C. M., and Kagermann, H., Reinventing Your Business Model, Harvard 

Business Review on Business Model Innovation, Harvard Business School Publishing Corporation, 2010. 

Jones, D. and Womack, j., Seeing the Whole. Lean Enterprise Institute, March 2003, See an on-line 

chapter in http://www.lean.org/Library/Seeing_the_Whole_Part1.pdf. Online version of Final Draft, 

Journal of Intellectual Capital, Volume 9, No. 1, 2008. 

Lindgren, P.  and Jørgensen,R., M.-S. Li, Y. Taran, K. F. Saghaug, Towards a new generation of business 

model innovation model, presented at the 12th International CINet Conference: Practicing innovation in 

times of discontinuity, Aarhus, Denmark, 10-13 September 2011  

http://www.omg.org/cgi-bin/doc?bmi/2013-11-01
http://www.gilb.com/dl137
http://www.gilb.com/dl484
http://www.goldsim.com/downloads/Documents/Version101Summary.pdf
http://www.goldsim.com/downloads/Documents/Version101Summary.pdf
http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2003e3value.pdf
http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2001e3value.pdf
http://www.haifa.ibm.com/projects/software/cbm/index.html
http://www.best-management-practice.com/Publications-Library/IT-Service-Management-ITIL/ITIL-2011-Edition/Service-Design/
http://www.best-management-practice.com/Publications-Library/IT-Service-Management-ITIL/ITIL-2011-Edition/Service-Design/
http://www.lean.org/Library/Seeing_the_Whole_Part1.pdf


 20  

Martin, J., The Great Transition: Using the Seven Disciplines of Enterprise Engineering, AMACOM. 

New York,1995. 

McCarthy, W. E., The REA accounting model: A generalized framework for accounting systems in a 

shared data environment, Accounting Review, July 1987. 

McFarland, Daniel A., The Pursuit of Organizational Intelligence, Blackwell Publishers, Oxford, UK, 

1999. 

Osterwalder, A., The Business Model Ontology- A Proposition in a Design Science Approach, Thesis, 

University of Lausanne, 2004, 

http://www.hec.unil.ch/aosterwa/PhD/Osterwalder_PhD_BM_Ontology.pdf . 

Osterwalder, A. and Pigneur, Y., Business Model Generation: A Handbook for Visionaries, Game 

Changers, and Challengers, John Wiley & Sons, 2010. 

PMBOK, A Guide to the Project Management Body of Knowledge (PMBoK Guide), Project Management 

Institute (PMI), 2000, http://www.cs.bilkent.edu.tr/~cagatay/cs413/PMBOK.pdf 

Porter, M. E., Competitive Advantage: Creating and Sustaining Superior Performance, The Free Press, 

New York, 1985. 

Rother, M. and Shook, J., Learning to See. Lean Enterprise Institute, 1998. 

Scheller. C.V., Hruby, P. Is POA the Precise Semantics of REA?, 3rd International Workshop on Value 

Modeling and Business Ontologies, Stockholm, Sweden, 2009. 

Scheller, C.V., Hruby, P. Modeling Services and Intellectual Property Rights Using POA (Possession, 

Ownership, Availability), 5th International Workshop on Value Modeling and Business Ontologies, Gent, 

The Netherlands, 2011. 

SoaML, SOA Modeling Language, Version 1.0, Release Date: March 2012, 

http://www.omg.org/spec/SoaML/1.0/ . 

SOA-RM, Reference Model for Service Oriented Architecture 1.0, OASIS, October 2006, 

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html. 

Sowa, J. F. and Zachman, J. A., Extending and formalizing the framework for  information  systems 

architecture, IBM  Systems  Journal,  vol  31,  no  3,  1992, 

http://www.zachman.com/images/ZI_PIcs/ibmsj1992.pdf . 

Stabell, C.B., and Fjeldstad, O.D., Configuring Value for Competitive Advantage: On Chains, Shops and 

Networks, Strategic Management Journal, 19(5), 413-417, 1998, 

http://www.agbuscenter.ifas.ufl.edu/5188/miscellaneous/configuring_value.pdf . 

Vervest, P. H.M., Van Liere, D. W. and Zheng, Li (Eds.), The Network Experience, New Value from 

Smart Business Networks, Springer, 2009, 

http://www.erim.eur.nl/ERIM/publications/book_releases/Release?p_item_id=5157588&p_pg_id=93 

http://www.hec.unil.ch/aosterwa/PhD/Osterwalder_PhD_BM_Ontology.pdf
http://www.cs.bilkent.edu.tr/~cagatay/cs413/PMBOK.pdf
http://www.omg.org/spec/SoaML/1.0
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://www.zachman.com/images/ZI_PIcs/ibmsj1992.pdf
http://www.agbuscenter.ifas.ufl.edu/5188/miscellaneous/configuring_value.pdf
http://www.erim.eur.nl/ERIM/publications/book_releases/Release?p_item_id=5157588&p_pg_id=93


 21  

Weill, P. and M. R. Vitale (2001). Place to space: Migrating to eBusiness Models. Boston, Harvard 

Business School Press. 

Whittle, R., and Myrick, C.B., Enterprise Business Architecture: The Formal Link Between Strategy and 

Results, CRC Press, 2005. 

Wikipedia, Value Chain,  http://en.wikipedia.org/wiki/Value_chain . 

Zachman, J. A., A framework  for  information systems  architecture, IBM  Systems Journal, vol  26, no  

3,  1987, http://www.cesames.net/wp-content/uploads/2010/04/ibmsj2603e.pdf . 

  

http://en.wikipedia.org/wiki/Value_chain
http://www.cesames.net/wp-content/uploads/2010/04/ibmsj2603e.pdf


 22  

4 Terms and Definitions 
Terms and definitions are included in Annex A:  Glossary. 

  



 23  

5 Symbols 
Symbols are consistent with the MOF and UML specifications. 

  



 24  

6 Additional Information 

6.1 Acknowledgements 
This sub clause identifies the organizations and representatives that are formal submitters of this 

specification as well as those who participated in the development of the specification and those who have 

an interest in the result and support adoption. 

6.1.1 Submitting Organizations 

Cordys Corporation B.V. 

Henk de Man, henkdman@gmail.com 

Mudigonda Rajender, mrajender@gmail.com  

CSC 

Pavel Hruby phruby@csc.com 

Victor L. Harrison 1vharrison7@gmail.com  

Klaus Loehnert kloehner@csc.com 

6.1.2 Participants 

In addition to the submitters, the following people contributed directly to the development of this 

specification. 

Verna Allee, verna.allee@valuenetworks.com  

 

Arne Berre, Arne.J.Berre@sintef.no 

 

Fred Cummins, fred.a.cummins@gmail.com 

 

Larry Hines, Larry.Hines@microfocus.com  

 

Peter Lindgren, pel@production.aau.dk 

 

Pete Rivett, pete.rivett@adaptive.com 

6.1.3 Supporting organizations 

 

Aalborg University 

Peter Lindgren pel@production.aau.dk 

Adaptive 

Pete Rivett pete.rivett@adaptive.com 

Agile Enterprise Design 

Fred Cummins fred.a.cummins@gmail.com 

AT&T  

 Jenny Huang, jh2873@att.com 

BizAgi, Ltd. 

Jesus Sanchez Jesus.Sanchez@bizagi.com  

Eindhoven Technical University 

 Rik Eshuis, Ph.D 

Fujitsu 

Hiroshe Miyazaki miyazaki.hir-02@jp.fujitsu.com  

InPaqt 

mailto:phruby@csc.com
mailto:1vharrison7@gmail.com
mailto:kloehner@csc.com
mailto:verna.allee@valuenetworks.com
mailto:Arne.J.Berre@sintef.no
mailto:fred.a.cummins@gmail.com
mailto:Larry.Hines@microfocus.com
mailto:pel@production.aau.dk
mailto:pete.rivett@adaptive.com
mailto:pel@production.aau.dk
mailto:pete.rivett@adaptive.com
mailto:fred.a.cummins@gmail.com
mailto:Jesus.Sanchez@bizagi.com
mailto:miyazaki.hir-02@jp.fujitsu.com


 25  

 Felix Janszen, felix.janszen@inpaqt.nl  

Mega International 

 Antoine Lonjon, antoine.lonjon@mega.com    

Ministery of Defense, Netherlands 

 J.C. van Es, jc.v.es@mindef.nl 

Oelan 

H. (Hans) van Bommel, hans.vanbommel@oelan.nl 

Princeton Blue 

Vitaly Khusidman, vitaly.khusidman@princetonblue.com . 

REA Technology 

Christian Vibe Scheller, cvs@reatechnology.com. 

SINTEF 

Arne Berre, Arne.J.Berre@sintef.no 

Strategic Value Partners 

 Neal McWhorter, nealmcwhorter@strategicvaluepartners.com  

ValueNet Works 

Verna Allee verna.allee@valuenetworks.com  

Vlastuin Group 

J.A.J.G.M. Lentjes, j.lentjes@vlastuin.nl  

6.2 IPR and Patents 
The submitters contributed this work to OMG on a Non-Assert basis. 

6.3 Guide to the Specification 
Clauses 1 - 6 are introductory topics, and clause 7 contains the metamodel specification that defines the 

structure of a compliant metamodel.  Additional information is provided by the following Annexes :  

 Annex A:  Glossary 

 Annex B:  Alignment with Existing Business Modeling Techniques 

 Annex C: Use Cases   

  

mailto:felix.janszen@inpaqt.nl
mailto:antoine.lonjon@mega.com
mailto:jc.v.es@mindef.nl
mailto:hans.vanbommel@oelan.nl
mailto:vitaly.khusidman@princetonblue.com
mailto:cvs@reatechnology.com
mailto:Arne.J.Berre@sintef.no
mailto:nealmcwhorter@strategicvaluepartners.com
mailto:verna.allee@valuenetworks.com
mailto:j.lentjes@vlastuin.nl


 26  

7 VDML Metamodel 
This clause specifies the normative, VDML metamodel.  It starts with an overview to provide a general 

understanding of the concepts to be modeled and the semantics and relationships of the model elements.  

The next sub-clause describes the details of the metamodel elements and their attributes and relationships. 

7.1 Overview of VDML  
VDML provides a medium for the consistent representation and integration of business concepts and 

viewpoints for business leaders to develop understanding, consensus and what-if scenarios, along with the 

ability to exchange the resulting models between different but complaint modeling tools.  Like BPMN, 

VDML includes concepts of activities, roles, flows and participants, but VDML provides a higher level of 

abstraction of business activity to focus on statistical characteristics of activities, resources, deliverables 

and value contributions - along with concepts of business capabilities and extended organizational 

relationships - to provide an enterprise-level perspective on the operation of the business.  This enterprise 

perspective supports recognition and understanding of problems and opportunities in the context of 

market demand and enterprise optimization, and it highlights the relative importance of potential changes 

to the structure and capabilities of the enterprise. 

The VDML modeling concepts include an aggregation of concepts that occur in different enterprise-level, 

business modeling and analysis techniques.  As a result, a VDML model can support multiple 

viewpoints—different abstractions of the design of an enterprise. Figure 1, below, depicts a number of 

viewpoints that have been considered in the development of VDML.  Several of these viewpoints are 

established business modeling techniques; Annex B:  Alignment with Existing Business Modeling 

Techniques discusses the alignment of the concepts of a number of established techniques to VDML.    

 

Figure 1 - VDML Viewpoints 

Operational Risk 
Analysis

e3Value

Business Model Value Streams

Value Networks

Capabilities

Organization

VDML

REA-Resource 
Event Agent

Services
Analysis



 27  

This specification includes minimal normative, graphical notation.  It is expected that notations of 

existing viewpoints will evolve and new views will be developed when more robust models can be 

developed using VDML.  Two substantial use cases are included in separate documents to illustrate the 

graphical notation and application of VDML.  See Annex C: Use Cases. 

VDML, version 1, does not include a simulation capability, but the ability to extend VDML for discrete 

event simulation, Monte Carlo simulation and System Dynamics has been considered in the metamodel.  

The following sub-clauses will include discussions of optional extensions to some elements to support 

simulation.  These extensions are normative, but are not required for compliance with VDML, version 1. 

The following sub-clauses will describe a number of aspects of modeling with VDML to help potential 

users understand the benefits of VDML modeling, and to help implementers understand the semantics and 

context of the model elements defined in the metamodel clause.  Each of these sub-clauses describes the 

business concepts and interactions of a cluster of closely related model elements.  Some elements will be 

mentioned in multiple clusters since these clusters are all interrelated. 

7.1.1 VDML Model 

A ValueDeliveryModel element contains, directly or indirectly, all of the elements of a particular 

VDML model.  A VDML model may have multiple Scenarios where each Scenario has different 

Measurements associated with the model elements, representing different operating circumstances and 

configurations.  These Measurements may be entered by a user, computed by the model or imported 

from production operations or a simulation. Different Scenarios can also delegate to different 

Collaborations as sub-Collaborations (i.e., services).  A default Scenario defines 

Measurements that apply as initial Measurements of the associated elements when applied to other 

Scenarios until Scenario-specific Measurements are assigned.  A ValueDeliveryModel is 

the unit of model exchange.  A model exchange between different VDML tools will include one or more 

Scenarios including the default. 

7.1.2 Value and Value Proposition 

The creation and exchange of value is a fundamental driver of analysis using VDML. A value is a 

measurable benefit delivered to a recipient in association with a business item/deliverable.  The 

Measurement represents the degree to which the property is present and may be either an objective or 

subjective measure.  A value may represent a feature that is intrinsic in the deliverable such as its 

composition, its performance, or its weight, or other benefits conveyed by the deliverable to the recipient 

such as price, a commitment to future purchases, a warranty, an environmental impact of the product or 

trustworthiness.  Different recipients will have different opinions regarding their level of satisfaction with 

the particular value (different Measurements), but they should all agree on the operational 

Measurement of the value contribution. 

A deliverable will typically convey multiple values, and an exchange may involve multiple deliverables.  

Together the bundle of deliverables and values will determine the level of appreciation of the recipient.  A 

ValuPproposition articulates the values associated with the deliverable(s) and provides a 

transformation from a Measurement of each value concerned to a level of satisfaction of that value for 

the particular recipient (e.g., customer or market segment).  These may be combined in a weighted 

average to represent the overall level of satisfaction.  This overall satisfaction, as well as some of the 

values, may be compared to the ValueProposition of a competitor.  The ValueProposition 



 28  

provides insight for identification of values that must be added or maintained and those that are 

candidates to improve competitive position.  Each ValueProposition represents the perspective of a 

recipient.  Since recipients may not explicitly define their preferences, each ValueProposition may 

represent estimates of the recipient’s satisfaction by the modeling business entity. 

ValueAdd elements represent value properties contributed by different activities participating in the 

delivery of the product or service. A contribution can be positive or negative.  For a product or line of 

business, the ValueAdd elements for the same type of value are aggregated to determine the impact on 

the ValueProposition.  A value that is considered below recipient expectations or market demand 

suggests a need for improvement.  The ValueAdd elements for that value can help identify activities and 

supporting Capabilities that might be improved to enhance recipient value.   

Different ValueProposition Scenarios may be defined for different recipients.  Each may 

incorporate variations in production operations, different product features, or a different set of values of 

interest and each will have their particular satisfaction levels for the values.  Recipients include different 

customer market segments, internal customers of services and the enterprise owners or stockholders.  

When a value proposition represents the interests of business leaders or stockholders, the model may 

represent a business future state so the recipient values can be viewed as transformation objectives. 

7.1.3 Capability Definition 

Business capabilities are fundamental to the delivery of a product or service.  Sharing of business 

capabilities can be a competitive advantage for product cost or quality as well as agility of the enterprise 

in adapting to new technology or market opportunities.  VDML provides a framework in which 

Capabilities can be identified and optimized from an enterprise perspective.   

Deliverables such as products or services are produced by using business Capabilities to perform 

Activities that AddValue.  A CapabilityOffer represents the ability of an organization to 

perform a particular type of work and may involve people with particular skills and knowledge, 

intellectual property, defined practices, operating facilities, tools and equipment.  VDML provides for 

specification of capabilities (CapabilityDefinition) in a taxonomy (CapabilityLibrary) 

that specifies broad classifications, broken down into very specific Capabilities that, potentially, are 

applicable to multiple products or lines of business.  The taxonomy is the basis for a Capability map 

display or a Capability “heat map” where certain Capabilities are highlighted for improvement.   

A specific Capability may be performed by one Actor or a team of actors.  A Capability may 

also rely on other supporting Capabilities to perform specific Activities.  These supporting 

Capabilities typically are sharable in different contexts to achieve economies of scale or consistent 

controls for multiple uses. 

The purpose of the capability taxonomy is to promote consistency in the definitions of similar 

Capabilities, and to provide the opportunity to recognize where the same or similar 

Capabilities are being performed by different organizations.  This presents the opportunity for 

consolidation to realize economies of scale.  It also provides reference to existing Capabilities 

(CapabilityOffers) when aCcapability is needed to respond to changing market demands or to 

develop a new product or line of business. 



 29  

Capabilities are owned by organization units (OrgUnits).  The OrgUnit either has or can obtain 

the necessary resources to deliver the Capability.  This typically involves a Pool of people with the 

necessary skills and knowledge along with facilities, practices, tools and equipment that are needed and 

possibly services providing supporting Capabilities.  

7.1.4 Collaboration  

Collaboration is the fundamental organizational concept of VDML.  A Collaboration represents the 

interaction of multiple Participants for a shared purpose.  Each Participant is in a Role that 

represents that articipant’s relationship to the rest of the participants and the shared purpose.  Each 

Participant may be an Actor (a human or automaton), or it may be another Collaboration. 

Participants are assigned to one or more Roles, which allows any given Participant to engage in 

multiple Collaborations. Those Roles, in turn may be assigned as Participants in other 

Collaborations.   

For example, a department in an enterprise is a collaboration.  It may engage persons in Position 

Roles as well as groups of persons in subordinate team OrgUnit Collaborations.  A Role, such 

as an engineer in a department, may be engaged by a committee, another Collaboration, or a specific 

set of Activities. So, in the committee example, a person in the engineering Role, as an engineer, 

also takes on the Role of representative of the department as a member of the committee. 

A Role will be filled by a Participant that has the Capability required to perform the associated 

Activity(s).  That Capability may be provided by an Actor (person or machine) or another 

Collaboration of Participants needed to achieve the needed Capability.  The capability 

taxonomy (CapabilityLibrary) provides a link to a CapabilityOffer(s) for identification of 

an OrgUnit(s) that can provide the needed Capability.   

A Collaboration may define the Activities performed by Participants in Roles.  The 

interactions between Roles may be represented as an Activity network.  While the generic 

Collaboration element can stand alone to represent any business collaboration or Activity 

network, it has been specialized to four more specific types of Collaboration: Community, 

BusinessNetwork, OrgUnit and CapabilityMethod.  A Community is a loose association of 

members that share a common interest.  A BusinessNetwork represents Collaboration between 

Parties that are typically, economically independent and that participate in an exchange in the 

marketplace.  An OrgUnit (organization) is a Collaboration that is a component of an organization 

structure and is responsible for defined resources. A CapabilityMethod is a Collaboration for 

specification of the operation of a sharable Capability (i.e., a service).   

7.1.5 Community 

Members of a Community are individuals or organizations that have come together due to a shared 

interest.  This includes professional organizations, standards organizations, political action groups, voters 

in a particular jurisdiction, and market segments representing shared interests in certain products or 

services.  A community may provide an opportunity to share expertise, to join together for advocacy, or to 

develop standard practices.  Some communities are associated with a formal organization that provides 

business functions and support for activities of the members.  The Community may be viewed as a 



 30  

branch of the more formal organization structure consisting of Org Units, discussed below.  A 

Community may be formed by persons with shared interests from across a business organization to 

share experiences and collaborate on innovation. Roles within the Community are Member Roles. 

7.1.6 Business Network 

A BusinessNetwork is a Collaboration between independent economic entities, participating in 

an exchange of products, services and usually money. Participants may include companies, 

government agencies, or other institutions (all VDML Collaborations) as well as individuals (e.g., 

retail customers).  They collaborate for their mutual benefit, providing and receiving deliverables with 

associated values.     

These Participants play Party Roles in a BusinessNetwork. Each Participant 

contributes to the BusinessNetwork Collaboration because they perceive that they realize a net 

gain from exchanging deliverables in their Party Role.  A BusinessNetwork model may be 

configured to engage specific Participants with known interests and capabilities.  In such a model it 

is possible to develop more detailed representations of the operation of each Participant through 

their Party Roles.  Alternatively, Party Roles may involve classes of participants such as a 

market segment represented by a Community where it is understood that in a specific business 

transaction, only one member of the Community would participate.  This abstraction is essential for 

reducing the scale of a VDML model where an enterprise may engage thousands of similar business 

partners and millions of similar customers.   

Each Party Role may exchange deliverables with some or all of the other Party Roles.  Each of 

the Party Roles perform Activities that produce or consume deliverables.  These Activities 

may delegate to other Collaborations, typically CapabilityMethods, to specify the internal 

operations in greater detail.  Of course, for a Participant other than the enterprise being modeled, 

there may be no model details available to represent the internal business operation and different 

Parties. In addition, a BusinessNetwork may model typical exchanges between the enterprise 

being modeled and many other entities.  For such a BusinessNetwork, certain Roles can be filled 

by a Community representing entities that have similar interests and participate in the 

BusinessNetwork in the same way with the understanding that only one Member of the 

Community participates in the Party Role for a particular exchange.  For example, a manufacturer 

may engage in a BusinessNetwork with dealers.  The “dealer” Party role may be assigned to a 

Community of dealers representing the potential Participants.   

A BusinessNetwork may be composed of more specific BusinessNetworks as where a company 

engages in separate but related business transactions, for example, the sales of printers and the associated 

sales of printer cartridges.  A BusinessNetwork may also represent a very broad set of relationships 

that depict a target business as a member of an ecosystem.  This is useful for identifying and 

understanding the less obvious business relationships and effects that may be factors in the success of the 

business including the impact on professional, environmental and social values.  Such models may focus 

on product lifecycles rather than individual product production and sales.  See an example in Figure 96.  



 31  

In a BusinessNetwork model, deliverables and associated ValuePropositions that are sent and 

received by each Party (Role) determine the overall value of participation for each Party and the 

viability of the network.  To determine the net economic value for a Party, each 

ValueProposition provided may be assigned an economic value that reflects the cost of the 

deliverable(s) with associated values, and each ValueProposition received may be assigned an 

economic value based on the recipient’s value requirements and competitive pricing.  It is at this level that 

the interaction of multiple lines of business may be evaluated such as in a business strategy where printers 

are sold at a loss to drive sales of cartridges. 

7.1.7 Organization Unit (Org Unit) 

VDML includes a representation of organizational structure because (1) organizations manage and 

maintain the implementation of business capabilities, (2) organizations are collaborations where specific 

people work together for a shared purpose, (3) organizations are accountable for the management and 

utilization of resources and the operating performance of their capabilities, and (4) organization structure 

is a fundamental aspect of any enterprise transformation. 

An OrgUnit is the building block of organizations.  For example, the top tier of a company, a business 

unit, or a department are all OrgUnit Collaborations. These are persistent Collaborations 

that generally have specific persons in Position roles.  OrgUnit is the only Collaboration type 

that is an owner of resources such as people, machines, intellectual property, etc., and is thus the only 

Collaboration that provides sharable capabilities. 

An OrgUnit has Position Roles.  Position Roles are formally defined and are usually 

identified with the job classification of an appropriate participant. Position Roles may define the 

budgeted positions, so some may be vacant.  The Participant in a Position may be an employee 

or a contractor, so a Position Role might be filled by an employee Role of the company or a 

contractor Role of a contract Collaboration. From time-to-time, a Position Role may be 

assigned to a Performer Role of a CapabilityMethod that defines a specific Activity to be 

performed by the person in the Position Role. Individual assignments are not required in a VDML 

model (version 1), but would be modeled to support a simulation. 

An OrgUnit may be modeled as having specific Activities and deliverables, but, in general, an 

OrgUnit will provide multiple Capabilities including internal administrative and support 

operations that are not part of its primary business purpose.  Some of these Capabilities are 

provided by Actors (humans or machines) in OrgUnit Positions.  Other more complex 

Capabilities require more specific Collaborations of some or all of the OrgUnit 

Participants.  These Collaborations are performed as the need arises and can be defined with 

CapabilityMethods that specify the Activities and Roles to be filled for each application of a 

Capability.   

Position Roles within an OrgUnit may also fill Roles in other Collaborations thus linking 

the OrgUnit with other Collaborations including other OrgUnits.  For example, an engineer in 

a Position Role within an engineering group my fill a Role as a member of a technical committee 

that has representatives from other groups to coordinate product design efforts.  A person in an OrgUnit 



 32  

Position Role may participate in a Performer Role such as the submitter (Role) in a purchase 

request Collaboration of the Purchasing department.  

An OrgUnit generally exists in a hierarchical, organization structure that defines a chain of 

responsibility over personnel and other resources and operations and has associated financial budgets and 

accounts.  Thus a company has divisions, the divisions have departments, the departments have groups or 

teams, etc.  Each ad hoc committee or project team is typically formed from Positions in more 

persistent OrgUnits, and each has a reporting relationship to a persistent OrgUnit.  OrgUnit is also 

used for other Collaborations that represent persistent relationships between specific 

Participants such as a standing review committee, a task force or a project team.  

An OrgUnit will typically have a manager or leader responsible for the management of the OrgUnit 

and its resources and operations.  The leader is a Participant in the Collaboration, however, 

being in a manager Position Role, that person also participates as a member of the parent OrgUnit 

Collaboration.  So a department may have groups (Collaborations) with a manager in each 

group (individual) in a Position Role where that Position manager is also a Participant in 

another Position Role of the parent department.  However, some organizations are not simple 

hierarchies.  For example, another member of a group may be the financial analyst that also has a 

Position Role in the department of the chief financial officer.  A project team may have 

Positions filled by persons in Position Roles in multiple OrgUnits—Roles in Roles. 

An OrgUnit typically brings together people and other resources that work together to provide a 

Capability represented as a CapabilityOffer.  The Capability may be as broad as the 

product engineering capability of a department, or may be more specific such as the engine design group.  

An OrgUnit will, from time to time, engage sub-groups of its members to produce specific results.  

These ad hoc Collaborations may be defined as CapabilityMethods, or may simply be project 

teams.  An OrgUnit may also offer Capabilities that are not defined in further detail.  This may 

indicate that the details are simply not modeled, or that the Capability is configured ad hoc to meet a 

specific requirement. 

Each Capability offered by an OrgUnit is identified by a CapabilityOffer.  A 

CapabilityOffer can identify the CapabilityMethod and/or Pool of Actors that provide the 

Capability as well as significant resources that are used to deliver the Capability.  Positions 

and managed resources that support Capabilities of an OrgUnit are in Stores or Pools 

(discussed later) associated with the CapabilityOffers that use them.  A Capability may 

produce value directly for a customer or it may contribute value when it is engaged in a specific 

Activity of a value stream. 

7.1.8 Capability Method 

Some activity patterns of Collaborations are used over and over again, producing specific 

deliverables and associated values.  An OrgUnit may offer multiple Capabilities that each apply a 

different, repeatable Activity pattern to support each CapabilityOffer.  Each pattern is specified 

with a CapabilityMethod.  Each use of a CapabilityMethod will have a set of 



 33  

Measurements and Assignments of Performers for that use, specified by its 

DelegationContext (discussed later).  

When a requirement for use of a CapabilityMethod occurs, people are assigned to certain Roles, 

they perform defined Activities, they use and consume resources, they create certain deliverables 

and they produce a result.  The details of this work can be represented with an Activity network with 

Roles, deliverables and ValueAdds that are required to deliver a desired result.  Any of the 

Collaboration types discussed above can represent its work with an Activity network, but a 

CapabilityMethod can be offered as a shared Capability, owned by a responsible OrgUnit and 

supported by people and resources owned by an OrgUnit.   

A CapabilityMethod defines a sharable Activity network.  This is similar to a business process 

definition that is used over and over to produce a result with potentially different input circumstances and 

Role Assignments for each occurrence.  However, a CapabilityMethod focuses on the statistical 

aspects of Activities, the flow of deliverables and contributions of value, and thus provides a higher 

level of abstraction of what the business does, how it performs and who is responsible rather than the 

detail of the exceptions, variations and control mechanisms involved in orchestrating work on individual 

work products.   

Consequently, an Activity network can also represent a case type for case management where the 

process is adaptive.  For a case model, VDML Activity Measurements reflect the statistical 

occurrences of an Activity for cases in the same scenario.  A VDML model of case management is 

closer to a CMMN (Case Management Model and Notation) model than a BPMN (Business Model and 

Notation) process.  In a CMMN case, Activities are linked by dependencies, typically representing 

the availability of a result or a change in state of a business item. 

 

 

Figure 2 - Capability Offers 

Capability
Definition A

Capability 
Definition B

Capability 
Offer A

Capability 
Offer B

Capability 
Offer A

Capability 
Offer B

Capability 
Method

Capability 
Method

Capability 
Method

Org X

Org Y

Org Z

Owns

Provides

Owns

Owns

Provides

Provides

Provides

Library



 34  

A CapabilityMethod is associated with a CapabilityOffer for the OrgUnit that has resources 

to provide the Capability.  Typically, the Roles of the CapabilityMethod will be filled by 

persons in Positions of the provider OrgUnit.  The CapabilityMethod is also associated with 

an owner OrgUnit that has the responsibility and authority to develop and modify the 

CapabilityMmethod design.  This recognizes that a CapabilityMethod may be developed and 

maintained by one organization, and it may be used by multiple OrgUnits to provide the 

Capability in different contexts.  This will be typical of an administrative function, as well as 

methods defined by a department and performed by different groups within the department.   

Figure 2, above, illustrates the relationships between a CapabilityDefinition (library), 

CapabilityOffers, CapabilityMethods and the owner and provider OrgUnits.  The 

CapabilityLibrary has two CapabilityDefinitions, A and B.  Each are offered by both 

OrgUnit X and OrgUnit Y as indicated by the “provides” association.  Each also has a 

CapabilityMethod for Capability A.  OrgUnit Z owns a CapabilityMethod that can be 

used (provided by) OrgUnit X or OrgUnit Y to provide Capability B.  OrgUnit Z is responsible 

for the design of the CapabilityMethod for Capability B (but not the supporting resources), 

OrgUnit X and OrgUnit Y are responsible for the operation of the CapabilityMethod for 

Capability B and the supporting resources.  The CapabilityOffers will have associated 

elements for resources that support the Capabilities in OrgUnit X and OrgUnit Y (not shown).  

The graphical elements shown here are not normative (for illustration purposes only). 

A CapabilityMethod, or any Collaboration providing a Capability, supports 

Measurements for a typical delivery of the Capability.  However, a CapabilityMethod is 

designed to be shared and will be engaged by Activities in one or more Collaborations to 

perform supporting work.  Thus a CapabilityMethod may be engaged by an Activity of another 

Collaboration as a “sub-Collaboration.”  The OrgUnit that performs the 

CapabilityMethod is engaged in the Role of the delegating Activity, and it uses the 

CapabilityMethod to provide the desired Capability.  The Role may perform multiple 

Activities, so the OrgUnit must have CapabiityOffers that support the requirements of each 

of those Activities.   

7.1.9 Activity 

Activities define work to be done by Participants in Roles within a Collaboration.  

Each Activity is performed by one Role of one or more Participant Roles within the 

Collaboration.  Within a Collaboration, the same Role may perform multiple Activities 

and may provide multiple Capabilities used by the Collaboration.  The Collaboration 

itself may perform a Role in Activities of another Collaboration. The Activity identifies 

the type of Capability required to perform the Activity by reference to a 

CapabilityDefinition, and the Role to be filled by a Participant that provides that 

Capability.  In some cases the Participant will be an Actor (human or automaton), in other cases it 

will be filled by a Collaboration (usually an OrgUnit using a CapabilityMethod).  Note that 

if a Role performs multiple Activities, and the Activities require different Capabilities, 

then the selected Participant must be capable of providing each of the Capabilities required.   

Figure 3, below, depicts a number of elements related to an Activity.  In the example, the Performer 

Role is filled by a Position Role (a Position in an OrgUnit), indicating that it is filled by a 



 35  

Participant in a Position, typically an Actor.  (This diagram is for illustration only and is not 

intended to be normative) 

 

Figure 3 - Activity structure 

An Activity consumes and produces BusinessItems as deliverables.  A BusinessItem is 

anything that can be acquired or created, that conveys information, obligation or other forms of value.  

For example, it includes parts, products, units of fluids, orders, emails, notices, contracts, currency, 

assignments, devices, property and other resources that can be conveyed from a provider to a recipient.  A 

BusinessItem flows between Activities and Stores, and it may flow through a delegation to a 

sub-Collaboration, or be the input or output of a Collaboration.   

Flow of BusinessItems into and out of Activities as well as Collaborations is depicted by 

DeliverableFlows.  Flow from one Activity to another indicates that the receiving Activity 

requires the BusinessItem as input. The value contributions of each Activity are represented as 

ValueAdds. As long as the input BusinessItem is essentially the same thing as the output, the 

VDML BusinessItem element remains the same, occurring in multiple DeliverableFlows. 

An Activity can have DeliverableFlows from one Activity or Store and to another 

Activity or Store. (but not from a Store to a Store)  In the figure, the BusinessItem is on 

both the input and output DeliverableFlows, indicating that the input and output are essentially the 

same except the output has some added value.  This could be a part going through progressive stages of 

production.  The ValueAdded to the BusinessItem is associated with the same OutputPort as 

the DeliverableFlow of the BusinessItem.  The ResourceUse, internal to the Activity, 

connects to InputPorts and OutputPorts of the Activity to indicate the resources used by a 

particular output (there could be additional InputPorts and OutputPorts).   This use of graphical 

elements is for illustration only and is not normative. 

An Activity is expected to contribute to one or more values to its deliverable(s) and thus to the overall 

result of the Collaboration (although not all values may be represented in a particular model).  These 

contributions are represented by ValueAdd elements.  Value contributions are associated with 

Port
Store

Business Item

Deliverable
Flow

Activity

Performer
Role

Position
Role

Resource
Use

Value
Add



 36  

Measurements that have a positive or negative impact on the market value or desirability of the end 

product or service.  ValueDefinitions are captured in a ValueLibrary, as are 

MeasuredCharacteristics (SMM Library).  Types of value can include product features and 

qualities as well as Activity performance characteristics such as duration, cost and defect rate that 

affect recipient (customer) satisfaction.  Specific Measurements of interest are at the discretion of the 

modeler and are generally determined by the ValueProposition expected by the recipient/customer. 

Together, the Roles of a Collaboration and their Activities produce the desired result and 

associated values.  The ValueAdds of a Collaboration are be summarized for their impact on a 

unit of production of the end product or service.  Consequently, the Measurements associated with an 

Activity and its ValueAdds are based on one unit of production or can be expressed in a way that is 

meaningful for considering the value of the end product or service such as cost per unit.  However, the 

Measurements are averages or statistical measures reflecting variances over some time period rather 

than the Measurements of one, selected unit of production.  Where there is variability in the result, 

such as different configurations of automobiles on a production line, the Measurements will represent 

a particular product mix with statistical variance.  Where it is important to represent different or more 

specific product mixes, the same Collaboration can be used to represent different Scenarios.  

Scenarios are discussed in more detail, below. 

The flows of a VDML Activity network are always directed toward completion, so all ValueAdds 

contribute to the end result.  Conversely, all values can be traced back to their contributors.  This is 

possible, because VDML is not representing the actual paths of each unit of production, but rather the 

statistical use of various Activities that contribute to results achieved over some period of time.  That 

representative set of results includes some Activities that are only active for some units of 

production due to product features, operating exceptions, defects, repairs, sample testing, machine 

failures, and so on.  The resultant Measurements represent a typical unit of production, but may 

include statistical Measurements of variance. 

Repairs and rework may be a particular concern for large, complex products.  A modeler may choose to 

represent Activities for repair and rework and divert some percentage of production along this path.  

Conversely, the modeler may simply add a rework factor into each Activity that will be applied to 

adjust operating Measurements to reflect this additional work.  Scrap Activities might receive 

some percentage of production and direct it to a salvage operation, so the cost of production goes into the 

end product less the recovery from salvage.  

Time-to-delivery may be an important measure for customer satisfaction.  This may be simply the sum of 

durations of Activities or Stores acting as buffers to determine the total time for delivery.  

However, the production process may be paced as with a production line, so that while some 

Activities are shorter in duration, they do not save time for delivery.  To express this, an 

Activity, typically an initial Activity, may specify a recurrence interval that may affect the 

duration and operating efficiency of subsequent Activities. 



 37  

Note that various factors such as product mix, rework and recurrence intervals may be applied to the same 

model in the context of different Scenarios so that the effects can be compared and alternatives can be 

evaluated. 

7.1.10 Port 

Ports are the connection points for inputs and outputs to Collaborations, Activities and 

Stores (specilaizations of PortContainer).  DeliverableFlows link Ports between 

PortContainers.  ValueAdds are associated with OutputPorts.  OutputPorts define the 

association of DeliverableFlows to ValueAdds, distinguishing between the ValueAdds 

associated with different BusinessItems that are output. 

Ports also provide for the association of InputPorts to OutputPorts within an Activity through 

association with a ResourceUse.  A ResourceUse may specify characteristics of use of resources 

from an InputPort such as how much resource is used, and/or how long a resource is in use. 

ResourceUse may also clarify dependencies between inputs (resources) and outputs (deliverables) that 

may affect costs and durations associated with the Activity. 

A ResourceUse can also define the allocation of DeliverableFlows among alternative Ports.  

So where inputs to an Activity come from multiple, alternative DeliverableFlows, a 

ResourceUse will determine the choice of alternative.  This may be expressed as a preference, or as 

percentage allocation, or for a simulation, this could apply selection criteria to individual transactions. 

7.1.11 Resources and stores 

A resource is something that is used or consumed by an Activity to deliver its value.  This includes 

parts, intellectual property, energy, a person, knowledge assets, a machine, a tool, and so on.  The VDML 

user should not attempt to represent all resources used by all Activities, but should focus on those 

resources that are important to support a high-level analysis.  So in most cases, production facilities, small 

parts, supplies, heat, light and power will not be of concern. The cost of such resources can be included in 

Capability overhead or additional Activity operating cost if they represent significant factors.  

However, parts of high value or machines that must be scheduled probably are of sufficient interest to be 

modeled. 

Resources are held in a Store and are delivered as BusinessItems over a DeliverableFlow 

from the Store to a target Activity.  A resource may be replenished by DeliverableFlow of a 

BusinessItem from a source Activity.  An Activity may forward a resource as a Business Item 

with a subsequent DeliverableFlow or delegate to a sub-Collaboration.   

A resource may be consumable or reusable.  A consumable resource is no longer available after it is 

consumed by an Activity; a reusable resource is used by one or more Activities and then 

returned to the Pool (a specialization of Store).  A resource also may be fungible or non-fungible.  A 

non-fungible resource is uniquely identifiable and cannot be replaced by another resource of the same 

type.  Fasteners and other interchangeable parts are fungible.  For example, an engine configured for a 

particular automobile assembly is not fungible. 



 38  

A Store may hold non-fungible resources to be matched to corresponding business items.  For example, 

a Store may hold engines and match them to the corresponding automobiles.  In VDML (without 

simulation) most individual business items are represented as typical of the model BusinessItem, so a 

Store of non-fungible resources can specify an average Store size or holding period to represent the 

effect of matching to corresponding BusinessItems. In a simulation implementation, the Store 

would match individual, incoming BusinessItems.   

Reusable resources are managed by a Pool and are assigned for use.  A Pool is a specialization of 

Store that can track the availability and assignments of individual resources.  Reusable resources are 

associated with a responsible OrgUnit and individual resources may be assigned to Pools based on 

their Capabilities.  A Pool tracks the total number of resources for its Capability as well as the 

number that are available for use.  The modeler may explicitly represent the individual 

BusinessItems for each resource, or just capture the Pool size and average number available, 

depending on the level of detail required.      

A CapabilityOffer can identify the Pool of an OrgUnit that provides reusable resources for that 

Capability.  A Pool is owned by the associated OrgUnit that is accountable for managing the 

Pool.  A reusable resource, represented by a BusinessItem, will be used by an Activity for some 

duration, and may be passed to one or more subsequent Activities before being returned.  The 

cumulative duration of these uses will determine the consumption of available resource time.  This, along 

with the rate of production, will determine if the Pool of resources will always have resources available 

or will introduce some additional wait-time for assignment of a resource. 

In simulation, the availability of each, reusable resource must be managed by a Pool as a 

BusinessItem.  Each resource may have scheduled times when it is unavailable.  An individual 

resource may also be available to perform one of multiple Capabilities and thus may be assigned to 

multiple Pools.  When a resource is assigned for use, it is unavailable until returned to the Pool. The 

availability must be associated with the specific resource since a resource could provide multiple 

Capabilities competing for assignments.  Availability of a resource may also be controlled based on 

a CalendarService.  This allows availability to reflect scheduled work time or other factors that may 

remove a resource from availability.  The CalendarService as well as attributes and relationships of 

the Pool and the BusinessItems required to support discrete event simulation are optional in VDML 

version 1. 

7.1.12 Measures 

VDML incorporates SMM (Structured Metrics Metamodel) in order to leverage the SMM metamodel and 

support the use of SMM Libraries to define Measures to be applied to VDML model elements.  In 

SMM, a Measure is a method that is applied to characterize an attribute of something by assigning a 

comparable quantification or qualification.  A Measure is applied to a Characteristic, such as 

weight of a part, to determine a Measurement that expresses the value of the Characteristic for a 

particular VDML model element. 

SMM also provides for different Measurements to be expressed for the same thing in the context of 

different Observations.  In VDML, an Observation is associated with an AnalysisContext.  



 39  

Thus a VDML element may have different Measurements for the same Characteristic in different 

AnalysisContexts. 

VDML Characteristics reflect statistical Measurements per unit of production.  A VDML 

model may include Collaborations having different units of production.  For example, an 

automobile may be the unit of production for a final assembly line, but for a tire manufacturing operation 

one tire is the unit of production, and five tires are needed for on automobile.  On the other hand, a 

product design is the unit of production of the Collaboration that produces a design for production 

of many automobiles. These Collaborations are related, but their units of production are different, 

so where these Collaborations interact, there must be appropriate adjustments for the ValueAdd 

Measurements to produce consistent results. 

For example, a tire production Collaboration will yield a cost per tire.  The automobile production 

cost must incorporate the cost of 5 tires.  From a product lifecycle perspective, the product costs must 

include the cost of product development and design revisions (additional design Collaborations) 

(along with other sales and marketing costs) prorated over the expected production for the lifecycle of the 

product. 

7.1.13 Scenarios and contexts 

In VDML, the operation of the business is represented by the interaction of multiple 

Collaborations.  The Role that performs an Activity in a Collaboration can be 

assigned to a sub-Collaboration to provide the desired Capability.  When the sub-

Collaboration is an OrgUnit, the OrgUnit can apply a CapabilityMethod identified by 

the OrgUnit’s CapabilityOffer to deliver the Capability.  

  

When the Activity of a Collaboration delegates to another Collaboration in order to 

engage a shared Capability, that particular use of the sub-Collaboration may be one of 

many. For each use of the Collaboration, there will be different measurements of 

performance depending on the particular circumstances of that use.  SMM supports the capture 

of multiple sets of Measurements by associating these with different Observations.  VDML 

uses this SMM facility by defining each use of a Collaboration as an AnalysisContext 

where each AnalysisContext is associated with an SMM Observation.  In VDML, a root 

AnalysisContext for a VDML model is specialized as a Scenario, and a context for a 

delegation is specialized as a DelegationContext. 

  

A DelegationContext defines aspects of the particular delegation to the sub-

Collaboration referenced as the calling Collaboration.  When an OrgUnit uses a 

CapabilityMethod, the OrgUnit is assigned to the Role that performs the delegating 

Activity and the CapabilityMethod is linked to the DelegationContext as the 

contextCollaboration—the context for that application of the CapabilityMethod 

defined.  If there is no CapabilityMethod, or the Role is not assigned to an OrgUnit, then 

the sub-Collaboration is both in the Role, and in the DelegationContext (through 

contextCollaboration). 

  



 40  

 

 

Figure 4 - Two uses of a collaboration 

An AnalysisContext may also define Role Assignments as context-dependent.  Thus the 

Role Assignments in one occurrence of a Collaboration may be dirrerent from the Role 

Assignments in another occurrence of the same Collaboration.  This is particularly 

important when the Participant in a Role is identified by an input to the Collaboration.  

In the alternative, a Role Assignment is associated with the Collaboration (the owner of 

the Role), and the Assignment is context-independent. 

The InputPorts and OutputPorts of the delegating Activity are linked to InputPorts 

and OutputPorts of the sub-Collaboration (e.g., CapabilityMethod ) using 

InputDelegations and OutputDelegations (which are context-based).  Consequently, the 

ValueAdd elements leading into the calling Activity are input to the sub-Collaboration, 

c

X1 X2 X3 X4

A B A C

Y1 Y2

Role A 
Assignment

Port 
Delegation

Port 
Delegation

(a) Delegation from X1

X

Y

Delegation Context 
of X

X1 DelegationContext of Y

Port 
Delegation

Y1 Y2

Port 
Delegation

Port 
Delegation

(b) Delegation from X3

Y

Role A 
Assignment

Delegation Context 
of X

X1 X2 X3 X4

A B A C

X

X3 Delegation Context of Y



 41  

and the ValueAdd elements of the sub-Collaboration become outputs of the calling 

Activity.   

Figure 4 illustrates two uses of the Y Collaboration within one use of the X Collaboration.  

This diagram is not normative—for illustration only.  These are all in the context of one Scenario (not 

shown).  Collaboration Y is assigned to Role A in the depicted DelegationContext of 

Collaboration X.  Diagram (a) illustrates the DelegationContext of Y when used in 

Activity X1; Diagram (b) illustrates the DelegationContext of Y when used in Activity X3.  

Each DelegationContext identifies the SMM Observation (not shown) and the 

DelegationContexts for Y identify the PortDelegation and Measurement elements 

associated with that delegation.  The illustration shows one input and one output linked through 

PortDelegations.  The dark rectangles associated with Y1 and Y2 represent Measurements, one 

for each use of each Activity of the Y Collaboration.  ValueAdd elements are not shown. 

VDML takes this concept a step further to allow an entire VDML model to have multiple Scenarios, 

different sets of Measurements to reflect different operating situations.  For example, one Scenario 

might represent Measurements for a particular product mix, and another Scenario could represent 

the Measurements for an alternative product mix.  Different Scenarios could be used to evaluate 

differences in the use of different operating assumptions or sub-Collaborations, or for current and 

future configurations and Measurements. 

A Scenario element represents the root AnalysisContext for the set of Measurements for a 

particular situation.  The Scenario and the DelegationContexts of that Scenario form an 

AnalysisContext tree of sub-Collaborations engaged in that Scenario as depicted in Figure 

5, below (non-normative graphic).  Since Assignments can also be context dependent, the delegations 

of one Scenario can differ from those of another Scenario thus forming a different tree. 

 

Figure 5 - Scenarios and context trees 

Collaborations and other elements that do not occur as sub-Collaborations in the Scenario 

are included in the root, Scenario context.  The root Scenario context includes Stores that occur 

in DeliverableFlows that cross from one Collaboration to another (crossing 

Scenario
(Default)

Delegation 
Context

VDML Model

Scenario 2Scenario 1

Delegation 
Context

Delegation 
Context

Delegation 
Context

Delegation 
Context

Delegation 
Context

Delegation 
Context



 42  

DelegationContexts), as when the product of a Collaboration is delivered as an input to 

another Collaboration. 

A VDML default Scenario defines default Measurements for all MeasurableElements in a 

VDML model.  The default Scenario does not include delegations--engagement of sub-

Collaborations, so there is only the default Scenario context for which  all 

MeasurableElements of the VDML model have a default set of Measurements in that context. 

7.1.14 Staff collaborations 

VDML models will tend to have a primary focus on the “line” or “value stream” operations that 

contribute directly to the delivery of a product or service and associated values to an end customer.  

However, the business also requires “staff” operations that maintain and change the line operations.  

These may be generally classified as support Capabilities, consistent with the value chain modeling 

concepts of Porter (1985).  They produce value for internal customers.  This includes the staff 

Activities in an organization that maintain the day-to-day operating Capabilities as well as 

those that support capability transformation initiatives. 

VDML cannot model the transition of Collaborations and Activities to accomplish a business 

transformation.  However, in addition to the mainstream business, (1) it can model the work of 

transformation, (2) it can model the consequences of transformation (by comparing the “current state” 

model to the “future state” model), and (3) it can model the work of day-to-day maintenance and support 

that keeps the business running and sustains efficiencies. 

The work of transformation involves a Collaboration and sub-Collaborations with Actors 

contributing to changes in the design and implementation of business operations.  This is no different 

from other Collaborations except that elements of the mainstream business model are the subject 

matter of the work.  The elements affected will be referenced by BusinessItems in the 

DeliverableFlows.  This work is likely to include strategic planning initiatives. 

The current business model and the future business model of a transformation can be modeled as different 

Scenarios of the same VDML model if the future structure is not significantly different.  Scenarios 

can also be used to represent stages of progression of the transformation to consider the transitional 

impact on the continued operation of the business. 

The day-to-day staff operations to maintain and support the operation of the business are more closely 

linked to the line operations.  Maintenance and repair of equipment is a primary example.  The 

monitoring of equipment, preventive maintenance, and timely response to failure will have a significant 

impact on line operations.  The deliverables are operational machines, but the values realized are reduced 

downtime and possibly reduced production defects.  Consequently, production performance 

Measurements of the operational Capability will reflect the values delivered by the machine 

maintenance and repair Capability.  The unit of production of machine maintenance will not be the 

same as the unit of production of the primary operations, so values of the machine maintenance 

Activities will need to be adjusted when applied to the primary value stream. 



 43  

Other Capabilities that may not be considered production operations should be considered as part of 

a product lifecycle.  These may include product engineering, purchasing, product distribution and field 

support as well as marketing and sales.  These may have different units of production, but they can affect 

product values.   These aspects of the enterprise are less likely to be modeled or integrated into a model in 

the short term, but they can certainly be modeled as separate value streams serving internal customers. 

7.1.15 Model integration 

VDML may be used to model different aspects of an enterprise.  For example, a VDML model might be 

developed for each line of business.  Another model might be developed for product engineering, or field 

support.  At some point it may be desirable to integrate these models for a more comprehensive 

representation of how the business works.  Some of the products may be bundled for sale so the values 

will be merged.  Some operations, such as product engineering, will contribute values that are not 

provided by production operations such as ease-of-use and mean-time-to-failure. Integration of models 

supports better understanding of the interactions of these different business aspects. 

The most straight-forward integration will occur in a BusinessNetwork between autonomous 

Parties—Participants that assume Roles in the BusinessNetwork.  This integration is 

defined in terms of the DeliverableFlows between the Parties.  Integration of two lines of 

business may occur in a Collaboration between the line-of-business value streams that brings 

together the BusinessItems and ValueAdds of both and reconciles unit-of-production differences 

to provide an integrated ValueProposition.  This integration might be viewed as providing a super-

Scenario with a Collaboration that engages each Scenario from one of the line-of-business 

models with a Scenario of the other line-of-business model, so the line-of-business Scenarios 

essentially become AnalysisContexts of the “super” Scenario. 

More often, integration will involve the integration of Capabilities of one model into a scenario of 

the other model—bringing in CapabilityMethods, Stores and Pools and, possibly, other 

Collaborations.  Each model may have its own CapabilityLibrary, 

BusinessItemLibrary, ValueLibrary, RoleLibrary and organization structure model that 

may or may not be consistent with the other model(s).  Integration will involve reconciliation of the 

following points of intersection: 

1 Reconciliation of libraries: CapabilityLibrary, BusinessItemLibrary, 

ValueLibrary and RoleLibrary.  Each of these must be a superset of the corresponding 

libraries of the models being integrated.  Duplicate names and names of duplicated definitions may 

need to be reconciled. 

2 Reconciliation of the organization structures as a superset of the OrgUnits in the two models 

with overlaps removed.  Overlapping OrgUnits may have duplicated CapabilityOffers so 

duplicated CapabiliyMethods, Stores and Pools will need to be removed.  References to 

names removed for duplicated elements will need to be reconciled. 

3 A branch of a delegation tree in one Scenario may then be assigned as a delegation from an 

Activity in the other Scenario.  This requires that delegated DeliverableFlows, 

BusinessItems and ValueAdds be reconciled as with any delegation.  This will likely affect 

the Measurements of both the delegated branch and the receiving Scenario since there will 



 44  

be a propagation of effect of changes in DeliverableFlows in both input flows and output 

flows.  

4 If a Collaboration in one model produces an input to a Collaboration in the other model 

through a shared Store (i.e., a side effect DeliverableFlow) then these inputs and outputs 

also must be reconciled. 

These linkages can be facilitated by the modeling environment implementation.  The user should be able 

to (1) select a Scenario branch—the Collaboration of interest and all of the direct and indirect 

delegations, (2) Identify the DelegationContext and Activity of the receiving Scenario that 

will delegate to the selected branch.  The implementation should then identify and facilitate the delegation 

bindings (PortDelegations) as for any sub-Collaboration, and identify the non-delegation 

inputs and outputs to be reconciled between the new branch and the parent model. 

  



 45  

7.2 VDML Class definitions  
This sub-clause defines the details of each of the VDML metamodel classes under the following topics: 

 Collaboration and value creation.  It defines the concepts associated with collaboration 

including activity networks and deliverables along with the contributions of activities and 

aggregation in ValueProposition.   

 Collaboration sub-types.  It defines the four sub-types of collaboration:  OrgUnit, 

BusinessNetwork, Community and CapabilityMethod.  

 Models and scenarios.  It defines the scope of a ValueDeliveryModel (VDML model) and 

the representation of scenarios within a model.  A scenario is a set of measurements associated 

with elements of a ValueDeliveryModel in a particular situation; a model may have 

multiple scenarios.  Within a Scenario, a Collaboration may be engaged in different 

AnalysisContexts and thus have a set of Measurements associated with each context. 

 Core elements.  It defines elements that represent primitive concepts in a 

ValueDeliveryModel.    

 Libraries.  Libraries are collections of business concept specifications.  Libraries may be shared 

across multiple ValueDeliveryModels. 

 Integration with SMM.  It defines elements that represent primitive measurements for values, 

performance characteristics and other measurable aspects. Measurements are defined by the 

SMM specification. 

7.2.1 Collaboration and Value Creation 

Collaborations define the fundamental structure of a ValueDeliveryModel.  

Collaborations involve Participants in Roles working together to perform Activities.  

Participants may be individuals or other Collaborations.  Their activities receive and produce 

deliverables for which they may contribute values.  Values are aggregated and articulated by 

ValuePropositions for recipients of the end products. 

This sub-clause is covers the following: 

 Collaborations and Participants describes the basic elements and relationships of 

collaborations 

 Activity networks describes the elements and relationships of Activities and Stores 

that occur within Collaborations including the Assignment of Roles and the flow of 

BusinessItems. 

 Values and ValuePropositions describes the contributions of ValueAdds by 

Activities and their aggregation in ValuePropositions that address recipients of end 

product. 

7.2.1.1 Collaborations and participants 

The diagram, below, describes the core structure of a ValueDeliveryModel.  Collaborations 

bring together Participants in assigned Roles to perform Activities.  Participants may 

be people or organizations or other Roles of people or organizations.  So a person in a manager Role in 

one department (Collaboration) may, as manager, participate as a member (Role) in a planning 

committee (Collaboration)--a Role in a Role. 



 46  

 

Figure 6 - Collaborations 

7.2.1.1.1 Actor Class 

An individual (indivisible) Participant, which might be human (a Person) or non human 

(e.g., a software agent or machine).  
 

SuperClass  
Participant 

Property Description 

scenario: Scenario [0..*] Scenarios that refer to the Actor as a 

contextCollaboration (see 7.2.3.2.2). 

 

7.2.1.1.2 Person Class  

A human Actor. 

SuperClass  
Actor 

7.2.1.1.3 Collaboration Class 

Collection of Participants joined together for a shared purpose or interest.  

Participants are assigned Roles that are specific to and contained in the Collaboration. A 

Participant might be named in the model (as instance of the class Participant), or might be 

dynamically determined from roleResource (see 7.2.1.2.3).  

VDML distinguishes OrgUnits, Communities, BusinessNetworks and 

CapabilityMethods as sub-types of Collaboration.  



 47  

SuperClass  
PortContainer 

Property Description 

collaborationRole: Role [0..*] Roles specific to and contained in the 

Collaboration. 

ownedAssignment: Assignment [0..*] Assignment of Collaboration Roles to 

Participants. These Assignments are specific to 

and contained in the Collaboration, i.e., they are not 

context-dependent. 

activity: Activity [0..*] Activities that are contained in the 

Collaboration and performed by Roles in the 

Collaboration.  

flow: DeliverableFlow [0..*] DeliverableFlows as contained in the 

Collaboration. 

businessItem: BusinessItem [0..*] BusinessItems as contained in the 

Collaboration. 

internalPortDelegation: PortDelegation [0..*] Delegations of Ports of the Collaboration to 

Ports of PortContainers (Activities or 

Stores) inside the Collaboration. This enables 

that the internal structure of a Collaboration need 

not be visible to the Activity that delegates its work to 

the Collaboration.  

delegationContext: DelegationContext [0..*] DelegationContexts that refer to the 

Collaboration as their contextCollaboration 

(see 7.2.3.2.3).  

scenario: Scenario [0..*] Scenarios that refer to the Collaboration as a 

contextCollaboration (see 7.2.3.2.2). 

 

Constraints 

 PortDelegations that are owned by a Collaboration MUST delegate Ports of the 

Collaboration (as PortContainer) to Ports of Activities that are contained in the 

Collaboration. 

 All Ports of a Collaboration MUST be mapped to Ports of Activities that are 

contained in the Collaboration, via internalPortDelegations.  

7.2.1.1.4 Participant Class (Abstract) 

Anyone or anything that can fill a Role in a Collaboration. Participants can be Actors 

(human or automatons) or Collaborations or Roles of Actors or Collaborations.  

SuperClass  
MeasurableElement 

Property Description 

assignment: Assignment [0..*] Assignments of Roles to the Participant.  



 48  

participantCalendar: CalendarService [0..1] Calendar that determines the availability of the 

Participant, to perform work. When a 

Participant is assigned to a Role, and that Role has 

a calendarService, the Participant’s 

calendarService overrides the Role’s 

calendarService. If a Participant is a Role and 

the Collaboration that contains the Role has a 

calendarService, the Participant’s 

calendarService overrides the Collaboration’s 

calendarService.  

 

7.2.1.1.5 Role Class 

A Role is an expected behavior pattern or Capability profile associated with participation in a 

Collaboration.  

SuperClass  
Participant 

 Property Description 

isLead: Boolean = false Indicates, if “true”, whether the Role is a leader in the 
Collaboration 

roleDefinition: RoleDefinition [0..1] Association to a RoleDefinition, as contained in a 

RoleLibrary that is applied to enforce consistency in 

the definition of Roles. Multiple Roles that are 

associated with the same RoleDefinition, are 

considered similar from the perspective of the library. 

roleAssignment: Assignment [0..*] Assignments that assign the Role to 
Participants 

performedWork: Activity [0..*] Activities that are performed by the Role 

port: Port [0..*] Ports for which the Role is responsible to handle the 

inputs or outputs that they represent.  

providedProposition: ValueProposition [0..*] ValuePropositions for which the Role is the 

provider (see 7.2.1.3.1).  

receivedProposition: ValueProposition [0..*] ValuePropositions for which the Role is the 

recipient (see 7.2.1.3.1). 

 

Constraints 

 Activities that are performed by a Role MUST be contained in the same 

Collaboration that also contains the Role. 

 If an Assignment, that assigns a Role to a participant, is contained in a 

Collaboration, the Collaboration MUST also contain the Role that is assigned. 

 An InputPort that provides the roleResource to which a Role is assigned MUST be 

contained by an Activity that is performed by that Role. 

 Ports to which a Role refers (via port), MUST be Ports of Stores.  



 49  

7.2.1.2 Activity networks 

Activities define the work of Roles of Participants in a Collaboration.  They are linked 

in networks by DeliverableFlows through which they receive and produce or modify 

BusinessItems (inputs and outputs).  A network may also receive BusinessItems from 

Stores or deliver them to Stores where the Resources may be held.  DeliverableFlows are 

connected to Activities and Stores through InputPorts and OutputPorts.  

An Activity may identify a required capability by reference to a CapabilityDefinition and 

engage an organization (OrgUnit) that provides that capability by selecting from organizations that 

provide a CapabilityOffer for the required capability.   

The diagram, below, focuses on Activities and associated elements. 

 

Figure 7 - Activities 

7.2.1.2.1 Activity Class 

Work contributed to a Collaboration by a Participant in a Role of the Collaboration. A 

Role may be filled by another Collaboration and a Role may contribute to multiple 

Activities in the same Collaboration. The Participant in the Role might be named in the 

model (as instance of the class Participant), or might be dynamically determined from 

roleResource (see 7.2.1.2.3).  

SuperClass  
PortContainer  

Property Description 

performingRole: Role [0..1] The Role in the Collaboration that performs 

the Activity 



 50  

capabilityRequirement: Capability [0..1] The Capability that is required by the 

Activity to perform its work, and which is 

defined via association to a Capability, as 

contained in a CapabilityLibrary that is 

applied to enforce consistency in the definition of 

Capabilities.   

appliedCapabilityOffer: CapabilityOffer [0..1] The CapabilityOffer that is applied to perform 

the work. It matches the Capability that is 

required by the Activity. When more than one 

CapabilityOffer is available in the business, 

that matches this Capability, a choice has to be 

made, and is persisted in the model via this property.  

delegationContext: DelegationContext [0..1] The AnalysisContext, as set by the 

Activity, in which a Collaboration 

(typically a CapabilityMethod) is analyzed, to 

which the Activity delegates its work (i.e., that 

the Activity uses as sub-Collaboration) 

resourceUse: ResourceUse [0..*] Specifications of the use or consumption of a 

resource, received as input, by the Activity.  

implementedPractice: PracticeDefinition [0..*] Indications of which practices are implemented by 

means of the Activity, via association to a 

PracticeDefinition, as contained in a 

PracticeLibrary, that is applied to enforce 

consistency in the definition of practices. The same 

practices might also require other Activities to 

implement them.  

duration: MeasuredCharacteristic [1] The average duration of an Activity.  

recurrenceInterval: MeasuredCharacteristic [0..1] The time interval between two successive 

recurrences of the Activity. As any 

MeasuredCharacteristic, it can be 

associated with a Measurement that can be 

stochastically determined, which is also useful in 

e.g., Discrete Event Simulation. The interval can also 

be considered equivalent to “takt time” or “cadence 

time” in Lean Value Stream Maps (see Rother et al. 

(1998)). The Activity that has the 

recurrenceInterval (i.e., the scheduled 

Activity) maybe called the “pacemaker” in Lean 

Value Stream Maps.  

 

Constraints 

 The Role that performs an Activity MUST be contained in the Collaboration that also 

contains the Activity.  

 The durations of each of the ResourceUses of an Activity MUST NOT be longer than 

the duration of the Activity.  



 51  

 The offset of Ports of the Activity MUST NOT be longer than the duration of the 

Activity. 

 For each Port of an Activity, the sum of its offset and the longest duration of a 

ResourceUse that relates to it, MUST NOT be longer than the duration of the Activity. 

 An Activity MUST NOT have a recurrenceInterval, when it receives inputs other 

than from Stores. 

 ResourceUse of an Activity MUST relate to Ports of that Activity. 

 When an Activity contains more than one InputPort to receive roleResource, i.e., 

InputPorts to which the Role is assigned that performs the Activity, the Activity 

MUST have a ResourceUse that relates to the set of these InputPorts (actually making 

them alternatives to each other), or each DelegationContext in which the Activity-

containing Collaboration is used, MUST specify a contextBasedAssignment (see 

7.2.3.2.1) that assigns the Role to the roleResource that is received on one of these 

InputPorts.  

7.2.1.2.2 ResourceUse Class 

Specifies the use or consumption of a resource within an Activity, to which the resource serves 

as input. This may involve the specification of how much resource is used, the duration during 

which it is used, as well as, possibly other Measurements. A ResourceUse may also specify 

alternative sources for a resource. In VDML a resource is considered anything that is “used” or 

“consumed” in the production of a deliverable. 

SuperClass  
MeasurableElement  

Property Description 

resource: InputPort [0..*] {ordered} The resource for which the use is specified. 

When more than one resource is specified, these 

resources serve as alternatives to each other. 

Preferences within the set of alternatives is implied 

by the ordering of the set of resources. 

resourceIsConsumed: Boolean = true Specifies whether the resource is consumed, or 

whether it is re-usable after Activity completion 

isExclusive: Boolean = false Specifies whether more than one resource can 

be used from a set of alternative resources. If 

“true” only a one resource can be used 

(typically the one with highest preference). If 

“false”, more than one resource can be used 

from a set of alternative resources. 

quantity: MeasuredCharacteristic [1] The quantity of the resource that is required to 

perform the Activity 

deliverable: OutputPort [0..1] ResourceUse might be dependent on an 

output of the Activity. If specified, the 

quantity of the ResourceUse specifies how 

much resource is required per unit of the 



 52  

deliverable. Example: An Activity that 

assembles a car requires four wheels. Each car 

(deliverable) requires four wheels 

(resource).  

inputDriven: Boolean = false If “false” (the default situation) the 

ResourceUse quantity specifies how much 

input (i.e., resource) is required, possibly 

dependent on an output (i.e., deliverable), 

and instances of the Activity, that use 

resource from the Store, can only be created 

based on other inputs (e.g., a sales order) than 

the resource that is related to the 

ResourceUse (the input can be said to be 

“pulled” by the Activity). If “true”, the quantity 

specifies how much output results from 

processing an input (e.g., in de-assembly), and an 

Activity instance will be created as soon as 

resource is available in the Store that provides 

the input (the input can be said to “push” 

Activity).  

condition: Expression [0..1] Specifies the condition under which the 

resource is used. 

planningPercentage: MeasuredCharacteristic [0..1] Specifies probability of use of the resource. 

duration: MeasuredCharacteristic [0..1] The average duration of use of a re-usable 

resource, or, when the resource is 

consumed, the average time it takes to produce a 

deliverable from the resource, by the 

Activity. 

 

Constraints 

 A ResourceUse MUST NOT have a duration when the resource is consumed (i.e., 

resourceIsConsumed = true), unless the deliverable is also specified for the 

ResourceUse. 

 The unit of the Measure (as specified by SMM) that determines the Measurement of 

planningPercentage, MUST be “percent”.  

 ResourceUse MUST NOT be defined in relation to resources that are not received from 

Stores. 

  



 53  

7.2.1.2.3 Assignment Class 

The diagram, below, defines the association of a participants to an activity through an assignment.  The 

participant may be determined through receipt of a business item that identifies a participant.  

Assignments are context-dependent, as will be described in the sub-clause on scenarios and contexts. 

 

Figure 8 - Assignments 

An Assignment specifies how a Role in a Collaboration is or can be filled. An Assignment 

might be structurally defined in the model, as Assignment of a Role to a Participant, such as an 

OrgUnit, Position or Actor. In that case the Assignment is contained by the Collaboration 

that also contains the Role. An Assignment might also be DelegationContext-specific. In that 

case the Assignment is contained by a DelegationContext in which the Collaboration that 

contains the Role is used. ContextBasedAssignments are typically, though not necessarily, 

controlled dynamically in “run-time”. The assignee to which the Role is assigned dynamically, is 

typically be defined by a resource that the Activity, that is performed by the Role, might obtain 

from a Pool of resources.  

SuperClass  
VdmlElement  

Property Description 

assignedRole: Role [1] The Role that is assigned by the Assignment 

participant: Participant [0..1] The Participant to which the Role is 

assigned 

roleResource: InputPort [0..*] The resources that are received through the  

InPutPorts and to which the Role is assigned. 

These resources are identified by the 

BusinessItems associated with the 

DeliverableFlows that connect to the 

InputPorts or to the InputPorts that are 

delegated to these InputPorts (see 7.2.4.4.2). 

The BusinessItems denote “classes of things” 

from which the Participant in the Role is 



 54  

determined dynamically. 

 

Constraints 

 An Assignment MUST NOT assign a Role to both a Participant and roleResource.  

 A Role MUST NOT be assigned to more than one Participant that is a Collaboration, 

unless the additional Assignments are context-based, i.e., contained by 

DelegationContext (see 7.2.3.2.3).  

 BusinessNetworks and CapabilityMethods MUST NOT be Participants in 

Positions (i.e., Roles in OrgUnits) or Members (i.e., Roles in Communities). 

 BusinessNetworks MUST NOT be Participants in Performers (i.e., Roles in 

CapabilityMethods).  

7.2.1.2.4 DeliverableFlow Class 

The diagram, below, shows the linkage of a DeliverableFlow to OutputPorts and InputPorts 

on sending and receiving Activities or Stores.  The DeliverableFlow conveys one or more 

BusinessItems. 

 

Figure 9 - DeliverableFlows 

A DeliverableFlow is a transfer of a deliverable from a provider (or producer) to a 

recipient (or consumer). A deliverable is a BusinessItem that is provided by a provider, 

i.e., produced by an Activity or delivered from a Store. 

SuperClass  
MeasurableElement  

Property Description 

deliverable: BusinessItem [1] Product or service, modeled as BusinessItem, produced 

by an Activity or delivered from a Store, and that can 

be conveyed to another Activity or Store. 

isTangible: Boolean = true If “true”, the deliverable represents something that is 

contracted, mandated or expected by the recipient and 

which may generate revenue. If “false,” the deliverable, 

as “intangible,” represents something that is unpaid or non-



 55  

contractual or that make things work smoothly or efficiently 

and help build relationships (see Allee (2008)) 

recipient: InputPort [1] Identifies the InputPort that receives the deliverable 

that is transferred via the DeliverableFlow 

provider: OutputPort [1] Identifies the OutputPort that provides the 

deliverable that is transferred via the 
DeliverableFlow  

duration: MeasuredCharacteristic [0..1] Represents the average delay that deliverables are 

subject to, when transferred from recipient to 

provider. This delay is caused by unbalance due to e.g., 

recipient’s capacity to process the deliverable, or 

to differences between provider’s and recipient’s 

batchSizes. 

channel: String [0..1] Mechanism to execute a DeliverableFlow, such as e-

mail, face-to-face conversation, SOAP, REST, physical 

transportation, postal service, telephone, fax, FTP, etc. 

 

Constraints 

 A DeliverableFlow MUST connect Ports of two Activities, or a Port of an 

Activity with a Port of a Store. 

 A DeliverableFlow that connects to a Port of a Store MUST not have duration. 

7.2.1.2.5 BusinessItem Class 

A BusinessItem is anything that can be acquired or created, that conveys information, obligation or 

other forms of value and that can be conveyed from a provider to a recipient. For example, it 

includes parts, products, units of fluids, orders, emails, notices, contracts, currency, assignments, devices, 

property and other resources.   

BusinessItems are classes of things that, dependent on the context in which they occur, might 

represent resources or deliverables. For example, a BusinessItem might be resource that 

is used by one Activity, and produced as deliverable by another. 

The diagram, below, indicates the association of a BusinessItem to a 

BusinessItemDefinition in the BusinessItemLibrary. 

 

Figure 10 - BusinessItems 

SuperClass  
MeasurableElement  



 56  

Property Description 

isFungible: Boolean = true If “true”, instances of the BusinessItem are 

interchangeable, otherwise only a particular instance can 

satisfy a need 

isShareable: Boolean = false If “true”, instances of the BusinessItem can be used 

simultaneously in multiple locations. 

definition: BusinessItemDefinition [0..1] Association to a BusinessItemDefinition, as 

contained in a BusinessItemLibrary that is applied to 

enforce consistency in the definition of BusinessItems. 

Multiple BusinessItems that are associated with the 

same BusinessItemDefinition, are considered 

similar from the perspective of the library.  

flow: DeliverableFlow [0..*] DeliverableFlows that convey the BusinessItem 

(see 7.2.1.2.4).  

store: Store [0..*] Stores in which the BusinessItem is stored (see 

7.2.1.2.6).  

method: CapabilityMethod [0..*] CapabilityMethods to which the BusinessItem 

serves as methodResource (see 7.2.2.4).  

 

7.2.1.2.6 Store Class 

The diagram, below, shows the relationship between a Store and a BusinessItem representing the 

Resources that are held by that Store.  A Store is specialized to a Pool if the Resources are 

reusable and thus may be tracked and returned to the Pool after use. 

 

 

Figure 11 - Stores 

A Store is a container of resource. The resource that is stored is identified by a 

BusinessItem.  

SuperClass  
PortContainer 



 57  

Property Description 

resource: BusinessItem [1] The BusinessItem that identifies the resource 

that is being stored 

storeOwner: OrgUnit [1] The OrgUnit that owns the Store (see 7.2.2.3).  

inventoryLevel: measuredCharacteristic [0..1] The average number of instances of the resource 

kept in Store. It might result from simulation. Its 

Measurement, like of any 

MeasuredCharacteristic might also be 

stochastically determined. Inventory level is essential to 

simulation.  

duration: measuredCharacteristic [1] The average time during which a resource is kept in 
Store 

supportedCapability: CapabilityOffer [0..*] The CapabilityOffers that the resource in the 

Store supports 

storeContext: AnalysisContext [0..*] AnalysisContexts that refer to the Store as their 

contextStore (see 7.2.3.2.1).  

 

Constraints 

 The BusinessItem that is received in the Store, or provided by the Store, via 

DeliverableFlows, MUST be the same as the BusinessItem that is associated with the 

Store as resource.  

7.2.1.2.7 Pool Class 

A Pool is a Store that contains re-usable resource, i.e., resource that is returned to the Pool 

after having been used, so that it is again available for use.  

SuperClass  
Store 

Property Description 

poolSize: measuredCharacteristic [0..1] The average number of resource instances that reside in the 

system, i.e., that are in the Pool (counted by 

inventoryLevel), or are in use by Activities.  

position: Position [0..*] Positions that are assigned, directly, or indirectly via other 

Roles, to Actors that are considered members of the 

Pool.  

poolCalendar: CalendarService [0..1] Calendar that determines the availability of the resource, 

when residing in the Pool, to perform work. The 

CalendarService that is assigned to a Position that is 

associated to the Pool, overrides the poolCalendar, as far 

as that Position is concerned.  

 

Constraints 

 The inventoryLevel of a Pool MUST NOT be bigger than the poolSize of that Pool.  



 58  

 Positions that are associated with a Pool MUST NOT be assigned, directly, or indirectly via 

other Roles, to Collaborations.    

7.2.1.3 ValueAdds and ValuePropositions  

The diagram below shows the structure that defines a ValueProposition. A ValueProposition 

expresses a recipient’s levels of satisfaction with the associated values.  A recipient may be an individual 

entity or a representative of a market segment.  Output Ports on an Activity or Store identify 

ValueAdd elements representing the value contributions of the Activity or Store, which value 

contributions maybe incremental, or they may be cumulative until that point in the value stream.  A 

ValuePropositionComponent may articulate a value (i.e., refers to a ValueAdd element), and 

transform its valueMeasurement to a recipient satisfactionLevel.   

 

 

Figure 12 - Values and ValuePropositions 

The concept of “Value” as is adopted in VDML can be defined as “a measurable factor of benefit, of 

interest to a recipient, in association with a BusinessItem”.  

7.2.1.3.1 ValueProposition Class 

A ValueProposition is the expression of the values offered to a recipient evaluated in terms of 

the recipient’s level of satisfaction 

SuperClass  
MeasurableElement 

Property Description 

component: ValuePropositionComponent [0..*] The components that constitute the 
ValueProposition 

propositionValue: measuredCharacteristic [0..1] The MeasuredCharacteristic that 

contains the Measurement of value for the 



 59  

ValueProposition as a whole. This 

Measurement typically represents the 

average level of satisfaction that the 

recipient of the ValueProposition 

has with each of its components, weighted by 

the percentageWeight as defined per 

component. Alternatively, 

propositionValue might be measured 

differently, such as based on the weighted 

average of componentValue of the 

components of the ValueProposition. 

satisfactionLevel: measuredCharacteristic [0..1] The MeasuredCharacteristic that 

contains the Measurement of the 

appreciation of the recipient with the 

proposition, typically based on a ranking or 

grading of the propositionValue (see 

SMM (2012) ).  

valueImpactForProvider: MeasuredCharacteristic [0..1] The MeasuredCharacteristic that 

contains the Measurement that represents 

the impact to the provider, of providing a 

ValueProposition. A typical example of 

a Measure to measure this property is “cost 

of goods sold”, or generally, the cost of what 

is provided, and of providing it. But this 

impact might also be measured in different 

ways.  

 

The Measurement might be the result of 

aggregating the Measurements of the 

corresponding property of the  

ValuePropositionComponents of the 

ValueProposition.  

valueImpactForRecipient: MeasuredCharacteristic [0..1] The MeasuredCharacteristic that 

contains the Measurement that represents 

the impact to the recipient, of receiving a 

ValueProposition. This property might 

typically be measured as the economic value 

(to the recipient) of the value that is 

received, but it might also be measured in 

different ways. 

 

The Measurement might be the result of 

aggregating the Measurements of the 

corresponding property of the  

ValuePropositionComponents of the 

ValueProposition. 

provider: Role [1] The Role that provides the 

ValueProposition. This Role contains 



 60  

the ValueProposition in the metamodel. 

recipient: Role [0..1] The Role that receives the 

ValueProposition, as provided by the 

provider.  

 

7.2.1.3.2 ValuePropositionComponent Class 

A part of a ValueProposition that articulates the perspective of the recipient of the 

ValueProposition on a particular value, as associated with a BusinessItem that is delivered to 

that recipient. This perspective includes the relative importance of that value to the recipient, 

expressed as a percentageWeight.  It might also include the level of satisfaction of the 

recipient, with that value, based on a ranking or grading of the value that is articulated by the 

component (see SMM (2012) ). The recipient’s perceived (incremental) value might also be 

expressed based on a DimensionalMeasure as well. As with any MeasurableElement, the user 

is enabled to add MeasuredCharacteristics if more Measurements are required.   

SuperClass  
ValueElement   

Property Description 

articulatedValue: ValueAdd [0..1] The value that is articulated by the 

ValuePropositionComponent, which 

is delivered to the recipient of the 

ValueProposition based on a 

BusinessItem. The value is represented by 

a ValueAdd object that is associated to the 

OutputPort that provides the 

BusinessItem.  

valueImpactForProvider: MeasuredCharacteristic [0..1] The MeasuredCharacteristic that 

contains the Measurement that represents 

the impact to the provider, of providing a 

ValueProposition (as far as that 

particular ValuePropositionComonent 

is concerned). A typical example of a 

Measure to measure this property is “cost of 

goods sold”, or generally, the cost of what is 

provided, and of providing it. But this impact 

might also be measured in different ways.  

valueImpactForRecipient: MeasuredCharacteristic [0..1] The MeasuredCharacteristic that 

contains the Measurement that represents 

the impact to the recipient, of receiving a 

ValueProposition (as far as that 

particular ValuePropositionComonent 

is concerned). This property might typically be 

measured as the economic value (to the 

recipient) of the value that is received, but 

it might also be measured in different ways. 



 61  

percentageWeight: MeasuredCharacteristic [0..1] The relative importance of the value, as 

articulated by the  

ValuePropositionComponent, to the 

recipient, expressed as a percentage. This 

property, together with the property that 

expresses the recipient’s 

satisfactionLevel, and 

valueMargin realized in relation to that 

recipient (see 7.2.2.1.2), may guide the 

provider in establishing priorities for 

improvement of Capabilities that 

contribute to value delivery.  

satisfactionLevel: measuredCharacteristic [0..1] The MeasuredCharacteristic that 

contains the level of satisfaction of the 

recipient with the value, as articulated by 

the ValuePropositionComponent, and 

is typically based on a ranking or grading of 

the valueMeasurement of that value (see 

SMM (2012) ). This property, together with 

the percentageWeight property, and 

valueMargin realized in relation to that 

recipient (see 7.2.2.1.2), may guide the 

provider in establishing priorities for 

improvement of Capabilities that 

contribute to value delivery. 

 

Constraints 

 The unit of the Measure (as specified by SMM) that determines the Measurement of 

percentageWeight of the ValuePropositionComponent MUST be “percent.”  

7.2.1.3.3 ValueAdd Class 

A ValueAdd, when associated with an OutputPort, represents the value contribution of a 

PortContainer (i.e., an Activity, Store or Collaboration) that contains that 

OutputPort. A ValueAdd might be aggregated from other ValueAdds, e.g., a ValueAdd of a 

Collaboration as aggregated from ValueAdds of Activities that are contained in the 

Collaboration. A ValueAdd also represents the value associated with a BusinessItem that is 

delivered to a recipient of that BusinessItem, by association to the OutputPort on the 

provider’s end of the DeliverableFlow that transfers that BusinessItem, or by association to 

the OutputPort that is the target of delegation of that OutputPort.  

The valueMeasurement of a ValueAdd, that is a leave of a ValueAdd aggregation structure, is 

typically dependent on or derived from Measurements of one or more 

MeasuredCharacteristics of the PortContainer that contains the OutputPort that carries 

the ValueAdd, or of elements that are associated with that PortContainer. These 



 62  

MeasuredCharacteristics will often identify performance Characteristics, such as aspects 

of costs, time (duration) or quality.  

SuperClass  
ValueElement 

Property Description 

propositionComponent: ValuePropositionCompoment [0..*] The 
ValuePropositionComponents 

that articulate the value that is embodied 

by the ValueAdd  

aggregatedFrom: ValueAdd [0..*] Represent ValueAdd objects that are 

aggregated.  

aggregatedTo: ValueAdd [0..*] Represents ValueAdd objects that 

aggregate ValueAdd.  

7.2.1.3.4 ValueElement Class (Abstract) 

A ValueElement is a generalization of ValueAdd and ValuePropositionComponent. It 

allows that tracing of articulatedValue, back to the value stream, i.e., to the Activities, 

Resources and Stores that contribute to it, is optional.  When it is optional for a 

ValuePropositionComponent, it is still required to e.g., define its valueDefinition and 

valueMeasurement. And for that reason the abstract parent class has been introduced, which contains 

these properties.  

SuperClass  
MeasurableElement 

Property Description 

valueDefinition: ValueDefition [0..1] The associated ValueDefinition, as 

contained in a ValueLibrary, used to 

define the type of value that the 

ValueElement represents. 

valueMeasurement: MeasuredCharacteristic [0..1] The MeasuredCharacteristic 

which associated Measurement 

contains the result of measuring of the 

value that is embodied by the 
ValueElement 

benchmark: MeasuredCharacteristic [0..*]  The MeasuredCharacteristic that 

defines a benchmark for the 

Measurement of value that is 

embodied by the ValueElement.  

A  benchmark is typically measured 

based on a grading or ranking of 

valueMeasurement (see SMM 

(2012) ). 

 



 63  

7.2.2 Collaboration Sub-Types 

VDML defines four different specializations of Collaboration: BusinessNetwork, 

Community, Org Unit and CapabilityMethod.  These specializations add specific semantics 

and place certain restrictions on the structure of each type including the types of Roles that can 

participate and the Roles each Collaboration type can fill. 

7.2.2.1 BusinessNetworks 

A BusinessNetwork is a Collaboration between independent business (or economic) entities, 

potentially companies, agencies, individuals or anonymous members of communities of independent 

business entities, participating in an economic exchange. 

 

 

Figure 13 -  BusinessNetworks 

7.2.2.1.1 BusinessNetwork Class 

A BusinessNetwork can only have Party roles.  A BusinessNetwork can have nested 

BusinessNetworks within it. 

SuperClass  
Collaboration 

Property Description 

party: Party [0..*] Roles specific to and contained in the BusinessNetwork. 

 

7.2.2.1.2 Party Class 

A Party identifies a Role in a BusinessNetwork.  

SuperClass  
Role 

Property Description 

valueMargin: MeasuredCharacteristic [0..1] The margin that a Party in a BusinessNetwork 

might realize. It might be determined as the difference 

between the sum of the Measurements of 

valueImpactForRecipient of 



 64  

receivedPropositions for the Party, and the 

sum of the Measurements of 

valueImpactForProvider of 

providedPropositions by that same Party.  

 

7.2.2.2 Communities 

A Community is a loose association of Participants with some shared purpose or interest.  For 

example, a Community may be used to represent a market segment or a membership organization.  

Communities are restricted to having only Member Roles. 

 

 

Figure 14 - Communities 

7.2.2.2.1 Community Class 

A Community is a loose Collaboration of Participants with similar characteristics or 

interests that work together for some shared purpose such as sharing knowledge. Examples are 

Communities of interest or expertise within or outside the organization, industry membership 

organizations, and market segments.  

SuperClass  
Collaboration  

Property Description 

member: Member [0..*] Roles specific to and contained in the Community. 

7.2.2.2.2 Member Class 

A Member identifies a Role in a Community.  

SuperClass  
Role 

7.2.2.3 OrgUnits and Capabilities 

OrgUnits represent the structure of an organization.  They exist to manage people and resources.  

OrgUnits can have capabilities that typically define how the OrgUnit uses its people and resources.  

An OrgUnit makes its capabilities available through CapabilityOffers that references associated 

CapabilityDefinitions.  Note that multiple OrgUnits may offer the same capability. 



 65  

A CapabilityOffer may identify Stores and/or Pools from which it draws resources where 

Pools are people with particular skills. 

The Activity network for a CapabilityOffer may be defined by a CapabilityMethod that 

identifies the Roles and their Activities. 

 

Figure 15 - OrgUnits and Capabilities 

7.2.2.3.1 OrgUnit Class 

An administrative or functional organizational Collaboration, with responsibility for defined 

resources, including a Collaboration that occurs in the typical organization hierarchy, such as 

business units and departments (and also the company itself), as well as less formal organizational 

Collaboration such as a committee, project, or task force. 

SuperClass  
Collaboration 

Property Description 

position: Position [0..*] Roles specific to and contained in the OrgUnit. 

capabilityOffer: CapabilityOffer [0..*] The CapabilityOffers as owned, managed and provided 

by the OrgUnit 

ownedMethod: CapabilityMethod [0..*] The CapabilityMethods that are owned by the 

OrgUnit. CapabilityMethods might be owned by other 

OrgUnits than the ones that provide the 

CapabilityOffers that are supported by the 

CapabilityMethods. 

ownedStore: Store [0..*] The Stores of resources that are owned by the 
OrgUnit 



 66  

location: String [0..1] The (optionally defined) location where the OrgUnit 

resides. Location may be used as geographic location. The 

way in which location is defined is left to the user.  

 

Constraints 

 When an OrgUnit provides more than one CapabilityOffer, these 

CapabilityOffers MUST provide different Capabilities.  

7.2.2.3.2 Position Class 

A Position identifies a Role in an OrgUnit.  

SuperClass  
Role 

Property Description 

actorPool: Pool [0..*] The Pools that the Actors, that fill the Positions (directly or indirectly 

via other Roles), are considered to be members of  

 

7.2.2.3.3 CapabilityOffer Class 

A CapabilityOffer represents the ability to perform a particular kind of work and deliver desired 

value, by applying resources that are managed together, possibly based on formalized methods 

(CapabilityMethods).  

SuperClass  
MeasurableElement 

Property Description 

capability: Capability [0..1] The Capability that is offered, and which is defined 

via association to a Capability, as contained in a 

CapabilityLibrary, that is applied to enforce 

consistency in the definition of Capabilities. 

capabilityProvider: OrgUnit [1] The OrgUnit that owns, manages and provides the 
CapabilityOffer 

method: CapabilityMethod [0..*] The CapabilityMethods that support the 

Capability that is offered 

capabilityResource: Store [0..*] The resources that support the Capability.  

releaseControl: ReleaseControl [0..*] The strategies to control the priority of the work to be 

performed by the CapabilityOffer.  

location: String [0..1] The (optionally defined) location where the 

CapabilityOffer resides. Location may be used 

as geographic location. The way in which location is 

defined is left to the user. Location of a 

CapabilityOffer can be used as basis to choose 

between multiple CapabilityOffers that offer the 

Capability that is required by an Activity.  



 67  

applyingActivity: Activity [0..*] The Activities to which the CapabilityOffer is 

applied (see 7.2.1.2.1).  

heatIndex: MeasuredCharacteristic [0..1] A Measurement that is compared with the 

heatThreshold as defined for the Scenario (see 

7.2.3.2.2). When the heatIndex is beyond the 

heatThreshold, the CapabilityOffer is 

assumed to require business innovation / transformation 

management focus. When one or more 

CapabilityOffers have heatIndex value beyond 

the heatThreshold, the associated Capability 

maybe highlighted on a “heatmap” (see 8.7).  

  

7.2.2.3.4 ReleaseControl Class 

A ReleaseControl defines the strategy to control the priority of the work to be performed by a 

CapabilityOffer. Examples of such strategies are “first come first served”, “shortest processing 

time first”, “Activities for similar deliverable Characteristics first”, “serving demand of 

highest priority customer first”,  “Activities that are on critical path, given demand fulfillment due 

date, first”, etc.  

At any moment in time, the work to be performed by a CapabilityOffer is represented by a set of 

Activity instances, from possibly multiple Activities (from possibly different 

Collaborations) that require the CapabilityOffer. The ReleaseControl strategy 

determines the “next” Activity instance that can start, from the subset of these instances that could 

start, i.e., for which the resources (including the roleResource), that are required to start, are 

available. Once a particular Activity instance is started, it will start using these resources, and the 

ReleaseControl will determine which Activity instance will start next, etc.  

When no is defined for a CapabilityOffer, the assumed strategy is “first come first served.”  

releaseControl is mainly used to support Discrete Event Simulation, though it might generally 

provide insight in how the CapabilityOffer is applied and how its resources are organized to 

perform the work. In the absence of simulation it essentially provides annotation. 

SuperClass  
VdmlElement 

Property Description 

strategy: String The strategy that determines the priority for work 

release, as specified by the ReleaseControl. It may 

ontain a descriptive string or it may contain a URL that 

specifies an operation which is specified outside the 

model 

scenario: Scenario [0..*] The Scenarios according to which the 

ReleaseControls are applied. 

 



 68  

7.2.2.4 CapabilityMethods  

A CapabilityMethod can define the activity networks by which an OrgUnit delivers a capability.  

When an Activity engages an OrgUnit to fill a role and provide an offered capability, the 

CapabilityMethod defines how the OrgUnit will perform that Activity.  The Activity 

provides inputs to the CapabiltyMethod, and receives results from the CapabilityMethod 

through the PortDelegation mechanism discussed later. 

 

 

Figure 16 - CapabilityMethods 

7.2.2.4.1 CapabilityMethod Class  

A Collaboration specification that defines the Activities, DeliverableFlows, 

BusinessItems, capabilityRequirements and Roles that deliver a Capability and 

associated value contributions (defined via ValueAdds, see 7.2.1.3). For each application of the 

CapabilityMethod, within a Scenario or in multiple Scenarios, there may be distinct 

Measurements of performance and value contribution, and Role Assignments suitable to the 

application context.  A CapabilityMethod does not own resources but receives them from other 

sources in the course of performing its Activities. 

SuperClass  
Collaboration 

Property Description 

performer: Performer [0..*] Roles specific to and contained in the 

CapabilityMethod. 

capability: Capability [0..1] The Capability that is provided through the 

CapabilityMethod, and which is defined via 

association to a Capability, as contained in a 

CapabilityLibrary that is applied to enforce 

consistency in the definition of Capabilities. 

methodOwner: OrgUnit [1] The OrgUnit that owns the CapabilityMethod. 

OrgUnits that apply the CapabilityMethod, to 

support their CapabilityOffers, need not be 

methodOwner.  



 69  

supportedCapability: CapabilityOffer [0..*] The CapabilityOffers that the 

CapabilityMethod supports.  

methodResource: BusinessItem [0..*] Resources that support, strengthen or accelerate the 

CapabilityMethod, and which cannot be 

controlled at the Activity level, i.e., for which use 

or consumption via InputPorts, counting of use or 

consumption and inventory control do not apply. 

Typical examples are knowledge resources such as 

patents, or licenses of applications. A business process 

execution engine is an example of such an application.  

implementedPractice: PracticeDefinition [0..*] Indications of which practices are implemented by 

means of the CapabilityMethod, via association 

to a PracticeDefinition, as contained in a 

PracticeLibrary that is applied to enforce 

consistency in the definition of practices. The 

same practices might also require other 

CapabilityMethods to implement them. 

 

Constraints 

 When a CapabilityMethod supports more than one CapabilityOffer, possibly 

provided by different OrgUnits, the Capability as provided by these 

CapabilityOffers MUST be the same.  

 When a CapabilityMethod supports a CapabilityOffer, then, when both refer to a Capability, they 

MUST refer to the same Capability.  

7.2.3 Models and Scenarios 

A ValueDeliveryModel represents the elements and relationships of the design of an enterprise or, 

more often, a segment of an enterprise.  All the elements of a model are directly or indirectly associated 

with a ValueDeliveryModel element.  A modeling environment may have multiple 

ValueDeliveryModels that represent different versions of the enterprise design, designs of different 

segments of the enterprise or even different enterprises.  Each model is independent. 

Within each model, there may be different Scenarios each representing a set of Measurements and 

potentially different delegations under different circumstances.   

7.2.3.1 ValueDeliveryModels 

The diagram below represents the direct associations of model elements with a 

ValueDeliveryModel element. 

 



 70  

 

Figure 17 - ValueDeliveryModels 

7.2.3.1.1 ValueDeliveryModel Class 

A ValueDeliveryModel is a model that supports business analysis and design based on evaluation of 

performance and stakeholder satisfaction achieved through the Activities and interactions of people 

and organizations using business Capabilities to apply resources and deliver stakeholder values. 

This class represents the entry point into a ValueDeliveryModel and provides the top-level container 

for all the elements of it.  

The fact that these elements are contained in a ValueDeliveryModel does not prohibit association of 

them, or elements contained in them with other ValueDeliveryModels, or elements that are directly 

or indirectly contained in them. It is essential to consider that ValueDeliveryModels do not prohibit 

re-use, but rather enable re-use.  

SuperClass  
AnalysisContext 

 Property Description 

scenario: Scenario [1..*] Scenarios that are contained in the 
ValueDeliveryModel 

metricsModel: SmmModel [0..*] SmmModels (as specified by SMM) that are 

contained in and specific to the 
ValueDeliveryModel 

businessItemLibrary: BusinessItemLibrary [0..*] BusinessItemLibraries that are contained in 

and specific to the ValueDeliveryModel 

capabilityLibrary: CapabilityLibrary [0..*] CapabilityLibraries that are contained in 

and specific to the ValueDeliveryModel 

valueLibrary: ValueLibrary [0..*] ValueLibraries that are contained in and 

specific to the ValueDeliveryModel 

roleLibrary: RoleLibrary [0..*] RoleLibraries that are contained in and specific 



 71  

to the ValueDeliveryModel 

practiceLibrary: PracticeLibrary [0..*] PracticeLibraries that are contained in and 

specific to the ValueDeliveryModel 

collaboration: Collaboration [0..*] Collaborations that are contained in the 
ValueDeliveryModel 

actor: Actor [0..*] Actors that are contained in the 
ValueDeliveryModel 

 

Constraints 

 A ValueDeliveryModel MUST NOT have more than one default Scenario (i.e., a 

Scenario with isDefault = true). 

7.2.3.2 Scenarios and AnalysisContexts 

The diagram below defines the associations of a scenario, DelegationContexts, and elements of 

Collaborations.  AnalysisContext is an abstract class of elements that form a delegation tree 

with Scenario at the root.  Each element in the tree may have a corresponding SMM Observation; this 

means it has a distinct set of Measurements for the Collaboration and/or Store elements 

associated with that context.  Each delegation by an Activity to a Collaboration is represented by 

a DelegationContext that can also define Role Assignments for that delegation and 

PortDelegation elements that link inputs and outputs of the delegation. Role Assignments 

can be defined per Scenario as well.  

This delegation structure allows a Collaboration to occur in different contexts within a Scenario, 

and it also allows an Activity to delegate to different Collaborations in different Scenarios.  

 

Figure 18 - Scenarios and AnalysisContexts 



 72  

7.2.3.2.1 AnalysisContext Class (Abstract) 

An AnalysisContext defines the set of Measurements of a particular use of one or more 

Collaborations, or Stores when used as decoupling points between Collaborations. It may 

also define Assignments of Roles in its contextCollaboration(s). 

SuperClass  
VdmlElement 

 Property Description 

contextObservation: Observation [0..1] The Observation (as specified by SMM) that contains 

the Measurements (of 

MeasuredCharacteristics) that are specific to the 

AnalysisContext (i.e., the 

observationContext)  

contextBasedAssignment: Assignment [0..*] Assignments of Roles that are contained in the 

contextCollaborations of the Scenario (when 

the AnalysisContext is a Scenario), or that are 

contained in the contextCollaboration of the 

DelegationContext (when the 

AnalysisContext is a DelegationContext). 

These Assignments are AnalysisContext-

specific, i.e., context-dependent. 

delegationContext: DelegationContext [0..*] The set of DelegationContexts that are owned by 

the AnalysisContext. 

contextStore: Store [0..*] The Stores that are analyzed in the 

AnalysisContext. When the AnalysisContext 

is a Scenario, the contextStores serve as 

decoupling buffers between Collaborations that are 

analyzed under that Scenario, and which 

Collaborations are related to either the Scenario 

itself, or to DelegationContexts in the nesting tree 

of that Scenario.  

 

Constraints 

 When an Activity delegates its work to a Collaboration, the DelegationContext in 

which this delegation occurs, MUST be owned by a DelegationContext in which the 

Activity-containing Collaboration itself is used, or MUST be owned by a Scenario 

(as the top of an AnalysisContext tree), when the Activity-containing 

Collaboration is directly related to that Scenario. 

 When an Activity delegates its work in more than one DelegationContext, these 

DelegationContexts MUST be owned by different AnalysisContexts, being 

DelegationContexts and/or Scenarios, in which the Activity-containing 

Collaboration itself is used.  



 73  

7.2.3.2.2 Scenario Class 

A Scenario defines a consistent business use case and set of Measurements of a 

ValueDeliveryModel by specifying a, possibly recursive, AnalysisContext for elements in 

scope of that use case. The nesting of AnalysisContexts allows a Collaboration to be used 

as a sub-Collaboration by more than one Activity, each of which sets its particular 

DelegationContext and Measurements. It may also, as AnalysisContext, define 

Assignments of Roles in its contextCollaborations. 

SuperClass  
AnalysisContext  

 Property Description 

type: String The type of the Scenario, e.g., “As-is / monitoring-

based,” “To-be / estimation-based,” “To-be / simulation-

based,” etc.  

isDefault: Boolean = false If “true,” the Scenario represents the default 

Scenario of a ValueDeliveryModel. The default 

Scenario may define a default Measurement for any 

MeasuredCharacteristic of any 

MeasurableElement in a ValueDeliveryModel, 

which Measurement applies as initial Measurement 

in any AnalysisContext in which the 

MeasurableElement is analyzed, until the 

contextObservation of that AnalysisContext 

contains a Measurement for that 

MeasuredCharacteristic. 

contextCollaboration: Collaboration [0..*] Collaborations, in scope of the Scenario and that 

serve as top-level Collaborations in that 

Scenario.  For an OrgUnit particpant in the 

calling Collaboration, if there is a 

CapabilityMethod, it is identified by this 

association.  The Participant in the same Role in 

the calling Collaboration may apply different 

CapablityMethods for different Activities. 

contextActor: Actor [0..*] Actors, in scope of the Scenario and for which the 

Scenario’s contextObservation imposes 
Measurements 

horizon: MeasuredCharacteristic [0..1] The time distance into the future that the Scenario 

spans 

releaseControl: ReleaseControl [0..*] ReleaseControls that apply in the Scenario 

heatThreshold: MeasuredCharacteristic [0..1] A MeasuredCharacteristic that serves as 

criterion to determine whether CapabilityOffers 

for a certain Capability require business innovation / 

transformation management focus. Such focus is assumed 

to be required when a CapabilityOffer’s 

heatIndex is beyond the heatThreshold. 

 



 74  

Constraints 

 The default Scenario MUST not contain DelegationContexts, and MUST not have 

contextStores, contextCollaborations and releaseControls.   

 A Scenario MUST NOT have more than one releaseControl for the same 

CapabilityOffer. 

7.2.3.2.3 DelegationContext Class 

AnalysisContext, set by an Activity and in which the Activity delegates its work to a 

Collaboration. A DelegationContext also defines the PortDelegations of Activity 

inputs and/or outputs to/from Collaboration inputs and/or outputs, and may, as 

AnalysisContext, define Assignments of Roles in its contextCollaboration. 

SuperClass  
AnalysisContext 

 Property Description 

parentContext: AnalysisContext [1] The AnalysisContext that contains the 
DelegationContext  

contextCollaboration: Collaboration [1] The Collaboration to which work is delegated 

by an Activity, and which is analyzed in the 
DelegationContext  

contextBasedPortDelegation: PortDelegation [0..*] PortDelegations that map Ports of the 

delegatedActivity to Ports of the 

contextCollaboration of the 

DelegationContext. These 

PortDelegations are 

DelegationContext-specific 

delegatedActivity: Activity [1] Activity that delegates its work to the 

contextCollaboration. 

 

Constraints 

 PortDelegations that are contained by a DelegationContext MUST map Ports of 

the DelegationContext’s delegatedActivity to Ports of the 

DelegationContext’s contextCollaboration. 

7.2.4 Core Elements 

Core elements  

7.2.4.1 VdmlElements 

VdmlElement is a shared abstract class for primary model elements.  It defines the associations to 

attach Attributes and Annotations, and its specialization, MeasuredElement is the abstract 

super-class for elements that can have associated Measurements.  This diagram begins to show 

integration with SMM, discussed later. 



 75  

 

Figure 19 - VdmlElements 

SMM (see SMM (2012) ) can associate Measurements with any measurand (i.e., object that is 

measured). In VDML we apply Measurements more narrowly, by enforcing that they can only be 

associated with MeasuredCharacteristics as defined by VDML. This is achieved by 

specialization of SMM-defined association between Element and Measurement, and redefining 

measurand (property owned by that association) to measuredCharacteristic (property owned 

by the specialized association).  

7.2.4.1.1 VdmlElement Class (Abstract) 

A VdmlElement is the root of the hierarchy of all classes in VDML. It is an abstract class.  

 

Property Description 

name: String The name of the VdmlElement 

description: String A description of the VdmlElement 

represents: String [0..1] A reference to something that the VdmlElement represents, such as a 

model element in any MOF-based model, an object in an application 

database, a web page, or anything uri-addressable (optional).  

attribute: Attribute [0..*] User defined attributes of the VdmlElement 

annotation: Annotation [0..*] User defined annotations to the VdmlElement 

 

7.2.4.1.2 Attribute Class 

An Attribute allows information to be attached to any VdmlElement in the form of a name-value 

pair.  Attributes provide a simple mechanism to add user defined information to model elements. 

 

SuperClass  
VdmlElement 

 

 

Property Description 

text: String Contains the name of the Attribute.  

value: String Contains the current value of the Attribute  



 76  

7.2.4.1.3 Annotation Class 

Annotations allow textual descriptions to be attached to any VdmlElement.  

 

SuperClass  
VdmlElement 

 

Property Description 

tag: String Contains the text of the Annotation to the target model element. 

7.2.4.1.4 MeasurableElement Class (Abstract) 

Abstract class that represents the subset of VdmlElements that can have user defined 

MeasuredCharacteristics.  

SuperClass  
VdmlElement 

 

Property Description 

measuredCharacteristic: MeasuredCharacteristic [0..*] User defined MeasuredCharacteristics 

of the MeasurableElement  

7.2.4.1.5 MeasuredCharacteristic Class 

MeasurableElement property that has Measurements as instance values. It is defined based on a 

Characteristic in a MeasureLibrary. A Measure as defined in the MeasureLibrary, 

against that Characteristic, is used to determine the Measurement(s) of the 

MeasurableElement.  

SuperClass  
VdmlElement 

 

Property Description 

characteristicDefinition: Characteristic [0..1] The Characteristic as defined in a 

MeasureLibrary (as specified by SMM).  

measurement: Measurement [0..*] Measurements that specify the instance values of 

the MeasuredCharacteristic 

 

Constraints 

 When a MeasuredCharacteristic is associated with more than one Measurement, each 

Measurement MUST be contained in a separate Observation (as specified by SMM), as 

associated with a separate AnalysisContext (see 7.2.3.2.1). 

7.2.4.2 Expressions 

An Expression specifies the operational mechanism by which one or more alternative elements are 

selected. The actual selection of elements would occur during business operations or a simulation.  In the 

absence of simulation, the expression provides the basis for statistical analysis of the selection criteria. 



 77  

 

Figure 20 - Expressions 

7.2.4.2.1 Expression Class 

An Expression defines a statement which will evaluate on a (possibly empty) set of model objects 

(instances of metamodel objects), when executed in a context. An Expression does not modify the 

environment in which it is evaluated.    

SuperClass  

VdmlElement  

Property Description 

body: String [0..1] Specifies the statement that is evaluated 

operand: Operand [0..*] The operands that are used in the body of the Expression  

7.2.4.2.2 Operand Class 

An Operand is an object on which the body of an Expression is evaluated.  

SuperClass  
VdmlElement  

Property Description 

measuredCharacteristic: MeasuredCharacteristic [1] The MeasuredCharacteristic that serves 

as operand in the Expression 

alias: String [0..1] Short substitute for the fully qualified name of the 

operand, in the context of the Expression. 

 

7.2.4.3 PortContainers  

Collaborations, Activities and Stores can have inputs and outputs.  Ports define 

the connection points for inputs and outputs, and PortContainer is the abstract superclass that 

associates Ports with Collaborations, Activities and Stores.  Ports, via their related 

DeliverableFlows, are also associated with the input and output BusinessItems.   



 78  

 

Figure 21 - PortContainers 

7.2.4.3.1 Port Class (Abstract) 

A Port is a connection point to a PortContainer, used to handle inputs and outputs (e.g., 

consume inputs, produce outputs or delegate inputs or outputs to Ports of other 

PortContainers).  

SuperClass  
MeasurableElement 

 

Property Description 

isIntermediate: Boolean = false Specifies whether communication with the 

PortContainer, via the Port, can occur at 

any time, or only at the start (for an 

InputPort) or end (for an OutputPort) of 

the lifecycle of an instance of the 

PortContainer. This difference is only 

relevant for PortContainers that require 

instances to conduct their behavior, which are 

Activities and CapabilityMethods.  

offset: measuredCharacteristic [0..1] Specifies, for an InputPort, the elapse of 

time between start of the Activity and the 

receipt of the input. For an OutputPort it 

specifies the elapse of time between the delivery 

of the output and the completion of the 

Activity.  

planningPercentage: MeasuredCharacteristic [0..1] Specifies probability of use of the Port.  

condition: Expression [0..1] Specifies the condition under which the 

Port is used. 

batchSize: MeasuredCharacteristic [0..1] Specifies the number of units of an input or 

output that are communicated together via a 



 79  

Port.  

handler: Role [0..1] Specifies the Role that is responsible for 

handling the particular input or output that 

the Port represents. 

 

Constraints 

 PortContainers other than Activities and Collaborations that are 

CapabilityMethods MUST NOT contain Ports with isIntermediate = false.  

 PortContainers that are Collaborations MUST NOT have Ports with a 

planningPercentage. 

 PortContainers that are Collaborations MUST NOT have Ports with a 

condition. 

 PortContainers that are Collaborations MUST NOT have Ports with a 

batchSize. 

 PortContainers that are Collaborations or Stores MUST NOT have Ports with 

offset. 

 When offset is defined on a Port, the Port MUST be defined as intermediate Port (i.e., 

isIntermediate = true). 

 An intermediate Port of an Activity MUST have an offset.  

 The unit of the Measure (as specified by SMM) that determines the Measurement of 

planningPercentage, MUST be “percent.” 

7.2.4.3.2 OutputPort Class 

Port that is used to handle outputs from PortContainers.  

SuperClass  
Port 

 

Property Description 

outputDefinition: BusinessItemLibraryElement 

[0..1] 

Association to a 

BusinessItemLibraryElement, as contained 

in a BusinessItemLibrary, used to define the 

type of output that the OutputPort can handle.  

output: DeliverableFlow [0..1] DeliverableFlow that refers to the OutputPort 

as its provider (see 7.2.1.2.4).  

resourceUse: ResourceUse [0..*] Objects that define ResourceUse relative to the 

OutputPort as deliverable (see 7.2.1.2.2).  

valueAdd: ValueAdd [0..*] ValueAdd objects that represent the values that are 

delivered by the OutputPort (see 7.2.1.3).  

delegatedOutput: OutputDelegation [0..*] The OutputDelegations that refer to the 

OutputPort as their target (see 7.2.4.4.3).  

outputDelegation: OutputDelegation [0..*] The OutputDelegations that delegate the 

OutputPort (see 7.2.4.4.3).  



 80  

 

7.2.4.3.3 InputPort Class 

Port that is used to handle inputs to PortContainers. 

SuperClass  
Port  

 

Property Description 

inputDefinition: 

BusinessItemLibraryElement 

[0..1] 

Association to a BusinessItemLibraryElement, as contained in 

a BusinessItemLibrary, used to define the type of input that 

the InputPort can handle.  

correlationExpression: 

Expression [0..1] 
Expression that is evaluated to specify the instance of a non-

fungible BusinessItem (i.e., BusinessItem with isFungible 

= false) 

input: DeliverableFlow [0..1] DeliverableFlow that refers to the OutputPort as its 

recipient (see 7.2.1.2.4). 

resourceUse: ResourceUse 

[0..*] 
Objects that define ResourceUse for the InputPort as 

resource (see 7.2.1.2.2).  

delegatedInput: 

InputDelegation [0..*] 
The InputDelegations that refer to the InputPort as their 

target (see 7.2.4.4.2).  

inputDelegation: 

inputDelegation [0..*] 
The InputDelegations that delegate the InputPort (see 

7.2.4.4.2). 

assignment: Assignment [0..*] The Assignment that assigns the Role to the roleResource that 

is provided by the InputPort (see 7.2.1.2.3)  

 

Constraints 

 A Port that is not an InputPort of an Activity and that is not recipient of a non-

fungible BusinessItem from a Store, MUST NOT have a correlationExpression.  

7.2.4.3.4 PortContainer Class (Abstract) 

A PortContainer is a container of Ports. VDML distinguishes Activities, Stores and 

Collaborations as sub-types of PortContainer.  

SuperClass  
MeasureableElement 

 

Property Description 

containedPort: Port [0..*] Ports that are contained in the PortContainer 

 

7.2.4.4 PortDelegations 

The diagram, below, defines the links between Ports in a delegation.  Essentially, specializations of 

PortDelegation map the input of a delegating Activity to the input of an engaged 

Collaboration, and the output of the engaged Collaboration to the output of the 

delegating Activity. InputDelegations and OutputDelegations are also used to map the 



 81  

input of a Collaboration to the input of an Activity that is contained in that 

Collaboration, and the output of a Collaboration to the output of an Activity that is 

contained in that Collaboration respectively.  

 

Figure 22 - PortDelegations 

7.2.4.4.1 PortDelegation Class (Abstract) 

A PortDelegation provides a mapping between a Port of an Activity and a Port of a 

Collaboration to which the Activity delegates its work (in a particular DelegationContext 

(see 7.2.3.2.3).  A PortDelegation can also provide a mapping between a Port of  a 

Collaboration and a Port of an Activity that is contained in the Collaboration. Ports of 

Collaborations can be considered to represent an interface that enables abstraction of the internal 

work organization of Collaborations away from Activities that delegate their work to the 

Collaboration.   

SuperClass  
VdmlElement 

7.2.4.4.2 InputDelegation Class 

A PortDelegation that maps an InputPorts. 

SuperClass  
PortDelegation 

Property Description 

source: InputPort[1] The InputPort that delegates its input to the target InputPort  

target: InputPort[1] The InputPort to which the source InputPort delegates its input 

 

Constraints 

 An InputDelegation MUST either map an InputPort of an Activity to an 

InputPort of a Collaboration, or it MUST map an InputPort of a Collaboration 

to an InputPort of an Activity that is contained in the Collaboration. 



 82  

7.2.4.4.3 OutputDelegation Class 

A PortDelegation that maps OutputPorts. 

SuperClass  
PortDelegation 

Property Description 

source: OutputPort[1] The OutputPort that delegates its output to the target OutputPort  

target: OutputPort[1] The OutputPort to which the source OutputPort delegates it output 

 

Constraints 

 An OutputDelegation MUST either map an OutputPort of an Activity to an 

OutputPort of a Collaboration, or it MUST map an OutputPort of a 

Collaboration to an OutputPort of an Activity that is contained in the 

Collaboration. 

7.2.5 Libraries 

Each VDML library is a collection of definitions of a particular type of business concept.  This ensures 

that a particular concept has the same name and definition wherever it occurs in a 

ValueDeliveryModel.  The names and definitions are user-defined, but it is expected that there will 

be shared libraries for specific industries so the same names and definitions are used in many companies 

with local extensions as needed.  The library structure provides for a taxonomy of concepts. Elements in 

these libraries also have associated data that is useful to guide users in “discovering” parts of their 

business designs, such as Activity networks, Resources that support Capabilities, etc. 

7.2.5.1 BusinessItemLibrary 

The diagram, below, defines the library structure for BusinessItemDefinitions. 

 

Figure 23 - BusinessItemLibraries 



 83  

7.2.5.1.1 BusinessItemLibrary Class 

A BusinessItemLibrary contains a taxonomy of BusinessItems, consisting of 

BusinessItemDefinitions and categories of them, and is applied to enforce consistency in the 

definition of BusinessItems. Multiple BusinessItems that are associated with the same 

BusinessItemDefinition, are considered similar from the perspective of the 

BusinessItemLibrary. 

SuperClass  
VdmlElement 

 Property Description 

businessItemLibraryElement: BusinessItemLibraryElement 

[0..*] 

BusinessItemLibraryElements 

that are contained in the 
BusinessItemLibrary 

7.2.5.1.2 BusinessItemDefinition Class 

A BusinessItemDefinition is a standardized definition, that is applied to enforce consistency in 

the definition of BusinessItems. Multiple BusinessItems that are associated with the same 

BusinessItemDefinition, are considered similar from the perspective of the 

BusinessItemLibrary. 

SuperClass  
BusinessItemLibraryElement 

 Property Description 

isFungible: Boolean = true If “true”, instances of BusinessItems, that are 

defined by the BusinessItemDefinition, 

are interchangeable, otherwise only a particular 

instance can satisfy a need 

isShareable: Boolean = false If “true”, instances of the BusinessItems that 

are defined by the 

BusinessItemDefinition can be used 

simultaneously in multiple locations. 

category: BusinessItemCategory [0..*] Zero or more BusinessItemCategories to 

which the BusinessItemDefinition 

belongs 

characteristicDefinition: Characteristic [0..*] Characteristics from 

MeasureLibraries (as specified by SMM) 

that may suggest 

MeasuredCharacteristics that 

BusinessItems may have that are 

standardized by reference to the 

BusinessItemDefinition. 

MeasuredCharacteristics of these 

BusinessItems may then refer to the 

Characteristics in these 

MeasureLibraries. Measures, in these 

MeasureLibraries associated with these 



 84  

Characteristics, may then suggest how 

Measurement is achieved. 

practiceDefinition: PracticeDefinition [0..*] PracticeDefinitions that specify the use 

of a resource that is defined by the 

BusinessItemDefinition (see 7.2.5.4). 

capabilityDependency: CapabilityDependency [0..*] The CapabilityDependencies that refer to 

the BusinessItemDefinition as their 

deliverableDefinition (see 7.2.5.3.5).  

supportedCapability: CapabilityDefinition [0..*] The CapabilityDefinitions that refer to 

the BusinessItemDefinition as their 

capabilityResourceDefinition (see 

7.2.5.3.2).  

 

Constraints 

 If a BusinessItemDefinition belongs to a BusinessItemCategory, the 

BusinessItemCategory MUST be contained in the same BusinessItemLibrary that 

also contains the BusinessItemDefinition. 

7.2.5.1.3 BusinessItemCategory Class 

A BusinessItemCategory is a collection of BusinessItemDefinitions similar enough to 

group them together, and which maybe be part of a hierarchy of BusinessItemCategories. 

SuperClass  
BusinessItemLibraryElement 

 

 Property Description 

categoryItem: BusinessItemDefinition [0..*] BusinessItemDefinitions that belong to the 
BusinessItemCategory 

parentCategory: BusinessItemCategory [0..*] Parent BusinessItemCategories of the 

BusinessItemCategory, in the hierarchy of 
BusinessItemCategories 

childCategory: BusinessItemCategory [0..*] Child BusinessItemCategories of the 

BusinessItemCategory, in the hierarchy of 
BusinessItemCategories 

 

Constraints 

 A BusinessItemCategory MUST be contained in the same BusinessItemLibrary as 

parentCategories and childCategories (if defined) of the BusinessItemCategory.   



 85  

7.2.5.1.4 BusinessItemLibraryElement Class (Abstract) 

A BusinessItemLibraryElement is a generalization of BusinessItemDefinition and 

BusinessItemCategory. It has been introduced to enable InputPorts (see 7.2.4.3.3) and 

OutputPorts (see 7.2.4.3.2) to refer to either of these. 

SuperClass  
VdmlElement  

7.2.5.2 ValueLibrary 

The diagram, below, defines the library structure for ValueDefinitions referenced by 

ValueElements elements. 

 

 

Figure 24 - ValueLibraries 

7.2.5.2.1 ValueLibrary Class 

A ValueLibrary contains a taxonomy of values, consisting of ValueDefinitions and categories 

of them, and is applied to enforce consistency in the definition of ValueElements (see 7.2.1.3.4). 

Multiple ValueElements that are associated with the same ValueDefinition, are considered 

similar from the perspective of the ValueLibrary. 

SuperClass  
VdmlElement 

 Property Description 

valueDefinition: ValueDefinition [0..*] ValueDefinitions that are contained in the 
ValueLibrary 

valueCategory: ValueCategory [0..*] ValueCategories that are contained in the 
ValueLibrary 

 



 86  

7.2.5.2.2 ValueDefinition Class 

A ValueDefinition is a standardized definition that is applied to enforce consistency in the 

definition of ValueElements (see 7.2.1.3.4). Multiple ValueElements that are associated with the 

same ValueDefinition are considered similar from the perspective of the ValueLibrary. 

SuperClass  
VdmlElement 

 Property Description 

category: ValueCategory [0..*] Zero or more ValueCategories to which the 

ValueDefinition belongs 

characteristicDefinition: Characteristic [0..*] Characteristics from MeasureLibraries (as 

specified by SMM) that may suggest 

MeasuredCharacteristics that 

ValueElements may have that are standardized by 

reference to the ValueDefinition. 

MeasuredCharacteristics of these 

ValueElements may then refer to these 

Characteristics in these MeasureLibraries. 

Measures, in these MeasureLibraries associated 

with these Characteristics, may then suggest 

how Measurement is achieved. 

 

Constraints 

 If a ValueDefinition belongs to a ValueCategory, the ValueCategory MUST 

belong to the same ValueLibrary that also contains the ValueDefinition. 

7.2.5.2.3 ValueCategory Class 

A ValueCategory is a collection of ValueDefinitions similar enough to group them together, 

and which maybe be part of a hierarchy of ValueCategories. 

SuperClass  
VdmlElement 

 Property Description 

categoryValue: ValueDefinition [0..*] ValueDefinitions that belong to the ValueCategory 

parentCategory: ValueCategory [0..*] Parent ValueCategories of the ValueCategory, in the 

hierarchy of ValueCategories 

childCategory: ValueCategory [0..*] Child ValueCategories of the ValueCategory, in the 

hierarchy of ValueCategories 

 

Constraints 

 A ValueCategory MUST be contained in the same ValueLibrary as 

parentCategories and childCategories (if defined) of the ValueCategory.   



 87  

7.2.5.3 CapabilityLibrary 

The diagram below defines the library structure for CapabilityDefinitions referenced by 

CapabilityMethods, CapabilityOffers and Activities. 

 

 

Figure 25 - CapabilityLibraries 

7.2.5.3.1 CapabilityLibrary Class 

A CapabilityLibrary contains a taxonomy of Capabilities, consisting of 

CapabilityDefinitions and categories of them, and is applied to enforce consistency in the 

definition of Capabilities. Multiple CapabilityOffers that are associated with the same 

Capability, are considered similar from the perspective of the CapabilityLibrary. Similarly, 

multiple Activities that are associated with the same Capability, are considered to have similar 

requirement from the perspective of the CapabilityLibrary.  

A Capability is the ability to perform a particular kind of work and deliver desired value. 

SuperClass  
VdmlElement 

 Property Description 

capability: Capability [0..*] Standardized Capabilities that are contained 

in the CapabilityLibrary. These 

Capabilities are either 

CapabilityDefinitions or 



 88  

CapabilityCategories 

capabilityDependency: CapabilityDependency [0..*] CapabilityDependencies that are 

contained in the CapabilityLibrary 

 

7.2.5.3.2 CapabilityDefinition Class 

A CapabilityDefinition is a standardized definition that is applied to enforce consistency in the 

definition of CapabilityOffers of OrgUnits and capabilityRequirements of 

Activities. Multiple CapabilityOffers that are associated with the same 

CapabilityDefinition are considered similar from the perspective of the 

CapabilityLibrary, and multiple Activities that are associated with the same 

CapabilityDefinition are considered to have similar requirement from the perspective of the 

CapabilityLibrary.  

SuperClass  
Capability 

 Property Description 

output: CapabilityDependency [0..*] Dependency that other Capabilities, 

identified by their respective 

CapabilityDefinitions, might 

have on the Capability, identified by 

the CapabilityDefinition, in that 

they require an output from it, which 

output  is identified by a 

deliverableDefinition that is 

related to the 
CapabilityDependency 

input: CapabilityDependency [0..*] Dependency that the Capability, 

identified by the 

CapabilityDefinition, might 

have on other Capabilities, 

identified by their respective 

CapabilityDefinitions, in that it 

requires an input from them, which 

input  is identified by a 

deliverableDefinition that is 

related to the 
CapabilityDependency 

capabilityResourceDefinition: BusinessItemDefinition [0..*] Definition of resources that may be 

required to support 

CapabilityOffers that are defined 

by reference to the 
CapabilityDefinition 

practiceDefinition: PracticeDefinition [0..*] Definition of practices that may be 

implemented, completely or in part, by 

enforcing the Activities that require 

Capabilities that are defined by the 



 89  

CapabilityDefinition, or by the 

CapabilityMethods that support 

CapabilityOffers that are defined 

by the CapabilityDefinition   

 

7.2.5.3.3 CapabilityCategory Class 

A CapabilityCategory is a collection of CapabilityDefinitions similar enough to group 

them together, and which maybe be part of an hierarchy of CapabilityCategories. 

SuperClass  
Capability 

7.2.5.3.4 Capability Class (Abstract) 

A Capability element in a CapabilityLibrary is an abstract element that might represent a 

CapabilityDefinition or a CapabilityCategory, introduced to enable enforcement of 

standardized Capabilities and standardized capabilityRequirements by reference to either 

one.  

For some Activities, especially in early stages of analysis and design, it is practical to define a 

capabilityRequirement by reference to a CapabilityCategory. Later on the requirement 

might be refined by referring to a distinct CapabilityDefinition in the 

CapabilityCategory. Similarly, some CapabilityOffers might be best defined by reference 

to a CapabilityCategory, whereas others can be defined by reference to a 

CapabilityDefinition. Experience with commonly known industry standard 

CapabilityLibraries have learned that it is often difficult to make a strict distinction between 

CapabilityDefinitions and CapabilityCategories. For these reasons, reference to an 

element that represents either a CapabilityDefinition or a CapabilityCategory, is useful.  

SuperClass  
VdmlElement 

 Property Description 

characteristicDefinition: Characteristic [0..*] Characteristics from MeasureLibraries (as 

specified by SMM) that may suggest 

MeasuredCharacteristics that  Activities 

may have that define their capabilityRequirement 

by reference to the Capability, or that 

CapabilityOffers may have that offer the 

Capability. MeasuredCharacteristics of 

these Activities or CapabilityOffers may then 

refer to these Characteristics in these 

MeasureLibraries. Measures, in these 

MeasureLibraries associated with these 

Characteristics, may then suggest how 

Measurement is achieved. 

parentCapability: Capability [0..*] Parent Capabilities of the Capability, in the 



 90  

hierarchy of Capabilities 

childCapability: Capability [0..*] Child Capabilities of the Capability, in the 

hierarchy of Capabilities 

 

7.2.5.3.5 CapabilityDependency Class 

A CapabilityDependency suggests a possible dependency between two Capabilities, which 

dependency clarifies that one Capability requires a deliverable that is provided by the other.  

A CapabilityDependency might suggest a DeliverableFlow between two Activities, 

when these Activities require the Capabilities that are defined by the 

CapabilityDefinitions that are dependent on each other via the CapabilityDependency. 

When an OrgUnit provides a CapabilityOffer, or a CapabilityMethod supports a 

CapabilityOffer, for the Capability that is identified by a CapabilityDefinition that 

relates to a CapabilityDependency, the deliverableDefinition of that 

CapabilityDependency might suggest a Port that the OrgUnit or the CapabilityMethod 

might require. 

SuperClass  
VdmlElement 

 Property Description 

deliverableDefinition: BusinessItemDefinition [1] Definition of the deliverable, the transfer of 

which is suggested by the 
CapabilityDependency 

source: CapabilityDefinition [0..1] CapabilityDefinition that defines the 

Capability that is applied to produce the 
deliverable  

target: CapabilityDefinition [0..1] CapabilityDefinition that defines the 

Capability that, when applied uses or consumes 

the deliverable 

isTangible: Boolean = true If “true”, the deliverable, as defined by the 

deliverableDefinition, represents 

something that is contracted, mandated or expected 

by the recipient and which may generate 

revenue. If “false”, the deliverable, as 

“intangible”, represents something that is unpaid or 

non-contractual or that make things work smoothly 

and help build relationships (see Allee (2008)) 

isFromExternalSource: Boolean = true The source of the CapabilityDependency is 

not defined explicitly. This suggests that, when an 

Activity requires a Capability that is defined 

by the target, the deliverable may be 

provided by a Store or is target of an 

InputDelegation. 

isForExternalTarget: Boolean = true The target of the CapabilityDependency is 

not defined explicitly. This suggests that, when an 



 91  

Activity requires a Capability that is defined 

by the source, the deliverable maybe 

received by a Store, or is target of an 

OutputDelegation. 

 

Constraints 

 A CapabilityDependency with external source (i.e., isFromExternalSource = true) 

MUST NOT have a source CapabilityDefinition connected.  

 A CapabilityDependency with external target (i.e., isForExternalTarget = true) 

MUST NOT have a target CapabilityDefinition connected.  

7.2.5.4 PracticeLibrary 

A PracticeLibrary contains a taxonomy of Practices, consisting of PracticeDefinitions and 

categories of them, and is applied to enforce consistency in the definition of what Practices are 

implemented by CapabilityMethods and/or Activities.  

 

 

Figure 26 - PracticeLibraries 

7.2.5.4.1 PracticeLibrary Class 

A practice is a definition of a proven way to handle specific types of work and that have been 

successfully used by multiple organizations. 

SuperClass  
VdmlElement 

 Property Description 

practiceDefinition: PracticeDefinition [0..*] PracticeDefinitions that are contained in the 
PracticeLibrary 

practiceCategory: PracticeCategory [0..*] PracticeCategories that are contained in the 
PracticeLibrary 



 92  

 

7.2.5.4.2 PracticeDefinition Class 

A PracticeDefinition is a standardized definition that is applied to enforce consistency in the 

definition of what practices are implemented by CapabilityMethods and/or Activities. 

SuperClass  
VdmlElement 

 Property Description 

category: PracticeCategory [0..*] Zero or more PracticeCategories to which 

the PracticeDefinition belongs 

resourceDefinition: BusinessItemDefinition [0..*] Definitions of resources that Activities or 

CapabilityMethods may require in order to 

comply to the practice, that is identified by the 

PracticeDefinition, that they implement.   

capability: capabilityDefinition [0..*] The CapabilityDefinitions that refer to the 

PracticeDefinition. 

 

Constraints 

 If a PracticeDefinition belongs to a PracticeCategory, the PracticeCategory 

MUST belong to the same PracticeLibrary that also contains the 

PracticeDefinition.  

7.2.5.4.3 PracticeCategory Class 

A PracticeCategory is a collection of PracticeDefinitions similar enough to group them 

together, and which maybe be part of a hierarchy of PracticeCategories. 

SuperClass  
VdmlElement 

 Property Description 

categoryPractice: PracticeDefinition [0..*] PracticeDefinitions that belong to the 
PracticeCategory 

parentCategory: PracticeCategory [0..*] Parent PracticeCategories of the 

PracticeCategory, in the hierarchy of 
PracticeCategories 

childCategory: PracticeCategory [0..*] Child PracticeCategories of the 

PracticeCategory, in the hierarchy of 
PracticeCategories 

 

Constraints 

 A PracticeCategory MUST be contained in the same PracticeLibrary as 

parentCategories and childCategories (if defined) of the PracticeCategory.   



 93  

7.2.5.5 RoleLibrary 

The diagram below shows the meta-model of RoleLibraries. A RoleLibrary contains a 

taxonomy of Roles, consisting of RoleDefinitions and categories of them, and is applied to 

enforce consistency in the definition of what Roles are defined as parts of Collaborations.  

 

Figure 27 - RoleLibraries 

7.2.5.5.1 RoleLibrary Class 

A RoleLibrary contains a taxonomy of Roles, consisting of RoleDefinitions and categories of 

them, and is applied to enforce consistency in the definition of Roles. Multiple Roles that are 

associated with the same RoleDefinition are considered similar from the perspective of the 

RoleLibrary. 

SuperClass  
VdmlElement 

 Property Description 

roleDefinition: RoleDefinition [0..*] RoleDefinitions that are contained in the 
RoleLibrary 

roleCategory: RoleCategory [0..*] RoleCategories that are contained in the 
RoleLibrary 

 

7.2.5.5.2 RoleDefinition Class 

A RoleDefinition is a standardized definition that is applied to enforce consistency in the definition 

of Roles. Multiple Roles that are associated with the same RoleDefinition are considered similar 

from the perspective of the RoleLibrary. 

SuperClass  
VdmlElement 

 Property Description 

category: RoleCategory [0..*] Zero or more RoleCategories to which the 

RoleDefinition belongs 

characteristicDefinition: Characteristic [0..*] Characteristics from MeasureLibraries (as 

specified by SMM) that may suggest 



 94  

MeasuredCharacteristics that Roles may 

have that are standardized by reference to the 

RoleDefinition. MeasuredCharacteristics 

of these Roles may then refer to these 

Characteristics in these MeasureLibraries. 

Measures, in these MeasureLibraries associated 

with these Characteristics, may then suggest 

how Measurement is achieved. 

 

Constraints 

 If a RoleDefinition belongs to a RoleCategory, the RoleCategory MUST belong to 

the same RoleLibrary that also contains the RoleDefinition. 

7.2.5.5.3 RoleCategory Class 

A RoleCategory is a collection of RoleDefinitions similar enough to group them together, and 

which maybe be part of a hierarchy of RoleCategories. 

SuperClass  
VdmlElement 

 Property Description 

categoryRole: RoleDefinition [0..*] RoleDefinitions that belong to the RoleCategory 

parentCategory: RoleCategory [0..*] Parent RoleCategories of the RoleCategory, in the 

hierarchy of RoleCategories 

childCategory: RoleCategory [0..*] Child RoleCategories of the RoleCategory, in the 

hierarchy of RoleCategories 

 

Constraints 

A RoleCategory MUST be contained in the same RoleLibrary as parentCategories and 

childCategories (if defined) of the RoleCategory.   

7.2.6 Integration with SMM (Structured Metrics Metamodel) 

This sub-clause defines the relationship between VDML and SMM.  SMM provides the representation of 

Measurements within VDML Scenarios (SMM Observations). 

7.2.6.1 Packages 

The VDML metamodel is contained in a single package, called VDML.  



 95  

 

Figure 28 - VDML Metamodel package 

For purpose of support of integrated measurement of performance and value characteristics, VDML 

depends on the Structured Metrics Metamodel (SMM), as specified in SMM (2012). The SMM 

metamodel package is imported in the VDML metamodel package, as indicated in the package diagram.  

The next sub-clause will provide a high level summary of the main SMM concepts as far as is required to 

understand VDML.  

7.2.6.2 SMM Main Concepts 

 

 

Figure 29 - SMM main concepts 

Details of SMM classes and the MOF (or CMOF) class, as represented in Figure 29, as well as, where 

appropriate, in other diagrams in this document, will not be specified in the VDML specification itself. 

The reader can refer to SMM (2012) and MOF (2011) for details.  

For convenience, we use the following definitions, as popularized versions of more formal and technical 

definitions in SMM (2012): 

 A Measure is method that is applied to characterize an attribute of something by assigning a 

comparable quantification or qualification. 

 A Measurement is the result of applying a Measure. 

 A Characteristic is a distinguishing feature or quality that can be qualified or quantified by 

applying a Measure.  



 96  

Basically, an SMM model contains zero or more MeasureLibraries and zero or more 

Observations. A MeasureLibrary contains, amongst others, defined Measures, which may be 

(re-)used to determine Measurements in different contexts. Each Measure is defined against a 

Characteristic (or “trait”), which is contained in the MeasureLibrary as well. A unit is 

defined per each Measure. Observations contain Measurements, via so-called 

ObservedMeasures, which are applications of Measures to obtain these Measurements. A 

Measurement contains the result of applying the Measure to a measurand (i.e., any object that is 

measured). In SMM a measurand is defined as Element (as specified by CMOF). Element (from 

CMOF) represents anything that can be modeled. In VDML a measurand is more narrowly defined 

(see 7.2.4.1).  

The reader should refer to SMM (2012) for a total and detailed specification of SMM.  

  



 97  

8 Notation 
 

8.1 General 
VDML notation is provided by diagrams that cover the following areas:  

 Role Collaboration  

 ValueProposition Exchange  

 Activity Network 

 Collaboration Structure 

 CapabilityLibrary 

 Capability Heatmap 

 Capability Management  

 Measurement Dependency 

These are specified in subsequent sub-clauses in this clause. Next to distinct notation elements, also a few 

examples diagrams are provided that apply these elements in combination. Though some of these 

example diagrams might apply colors, colors do not imply any normative semantics.  

8.2 Role Collaboration  
The concepts of Role, as contained in a Collaboration, is fundamental to VDML, and thus a Role 

is represented on most of the diagrams. 

In an Activity Network diagram (see 8.4) a Role is represented as a swim-lane. In other diagrams, in 

particular Role Collaboration diagram, a Role is represented as oval.  

The Role shape (oval) in Figure 30 does not have an expand button, which implies that it is not assigned, 

or, if it is assigned, it is assigned to an Actor (possibly represented as BusinessItem) or other Role.  

 

Figure 30 - Role shape as oval 

The Role shape in Figure 31 has an expand button, to indicate Assignment of the Role to a 

Collaboration. The Participant that fills the Role may contain its own Roles.  

 

Figure 31 - Role shape with expand button  

Figure 32 shows a DeliverableFlow with isTangible = true (see 7.2.1.2.4). It is shown as solid 

connector. The name along the alongside the connector represents the name of the deliverable (the 

BusinessItem that is associated as deliverable). Optionally a sequence number can be added 



 98  

(behind the double colon), to support “story telling” based on a Role Collaboration diagram. A potential 

sequence number may be derived from the metamodel, but is a convenience feature of the diagram itself, 

as multiple Role Collaboration diagrams, on the same underlying Collaboration in the model, 

might apply different sequence numbers.  

 

Figure 32 - DeliverableFlow shape for Tangible  

Figure 33 shows a DeliverableFlow with isTangible = false (see 7.2.1.2.4). It is shown as 

dashed connector.  

 

Figure 33 - DeliverableFlow shape for Intangible 

Figure 34 represents how, in a Role Collaboration diagram, two Role shapes are connected via a 

connector that represents a DeliverableFlow. 

 

Figure 34 - DeliverableFlow for Tangible, connecting two Roles 

DeliverableFlows connect Ports of two Activities, or a Port of an Activity and a Port 

of a Store. A Role may perform Activities, defined as its performedWork, and a Role may 

be responsible for handling inputs or outputs of Stores, which handling is defined by reference to 

the Store Ports (see 7.2.1.1.5). The detail concerned with Activities, Stores and their Ports 

is abstracted out of the Role Collaboration diagram. Just the DeliverableFlow connector, as 

connecting two Roles, is shown. Activity Network diagrams (see 8.4) show how 

DeliverableFlows connect Activities or Activities and Stores.  

A DeliverableFlow that connects Activities that are performed by the same Role MUST NOT 

be represented (as connector) in a Role Collaboration diagram. Similarly, a DeliverableFlow that 

connects an Activity, performed by a Role, and a Store, via a Port for which that same Role is 

defined as handler (see 7.2.4.3.1), MUST NOT be represented (as connector) in a Role Collaboration 

diagram. Only connectors that indicate transfer of deliverable between Roles, are depicted.  

A Role Collaboration diagram might also be used to represent how Roles collaborate (i.e., exchange 

deliverables) through other Roles in which they serve as Participant. 

Figure 35 provides, as example, the Role Collaboration diagram for a BusinessNetwork. 

Transporters place orders, based on which the Manufacturer produces and delivers the product (e.g., 

trailers). Transporters also provide feedback, in the form of ideas for further innovation of the product. 

The Manufacturer uses these ideas to apply new innovations and to make these available to the 

transporters market. The transporters market might be modeled as Community, which fills the 

Transporter’s Party, which is indicated by the expand button on the corresponding Role shape.  



 99  

 

Figure 35 - Role Collaboration diagram (BusinessNetwork example) 

8.3 ValueProposition Exchange  
In a ValueProposition Exchange diagram, a ValueProposition is shown as square (see Figure 

36). The ValueProposition name is placed outside the square.  

 

Figure 36 - ValueProposition shape 

Figure 37 shows a Role providing a ValueProposition. The connector represents the association 

that connects the Role and the ValueProposition via respectively its provider’s and 

providedProposition ends (see 7.2.1.3).  

 

Figure 37 - Role providing a ValueProposition 

Figure 38 shows a Role receiving a ValueProposition. The connector represents the association 

that connects the Role and the ValueProposition via respectively its recipient’s and 

receivedProposition ends (see 7.2.1.3).  

 

Figure 38 - Role receiving a ValueProposition 

Figure 39 shows, as example, the ValueProposition Exchange between the Parties in the 

BusinessNetwork that is also underlying the Role Collaboration diagram in Figure 35. Note that the 

same Role might provide and receive multiple ValuePropositions, from possibly multiple other 

Roles, thought this simple example only shows two Roles, each of which provides just one 

ValueProposition. The name of the ValueProposition that is provided by the Manufacturer 

suggests that it is about value associated with the delivery of trailers (the product) of a certain product 

family of trailers (here called XTrailer).  



 100  

 

Figure 39 - ValueProposition Exchange diagram (example) 

When compared to the Role Collaboration diagram, the ValueProposition Exchange diagram 

provides a more abstract view on the Collaboration. Roles are depicted in both. A 

ValueProposition, as depicted in a ValueProposition Exchange diagram, consists of 

ValuePropositionComponents, which are associated with ValueAdds as contained by 

OutputPorts at the provider’s end of DeliverableFlows that are depicted in the Role 

Collaboration diagram (see Metamodel diagram in Figure 12). 

8.4 Activity Network 
In an Activity Network diagram, a Role is represented as swim-lane (see Figure 40). 

 

Figure 40 - Swim-lane shape for Role (in Activity Network diagram)  

As indicated in Figure 41, an Activity is shown as rectangle with rounded corners. 

 

Figure 41 - Activity shape 

An Activity shape with expand button (see Figure 42) represents an Activity that delegates its 

work to a Collaboration.    

 

Figure 42 - Activity shape, with expand button 



 101  

Stores and Pools are represented in both Activity Network diagram and Capability 

Management diagram (see 8.8). A Store is shown as bottom-up pyramid, with its name placed outside 

the shape (see Figure 43).  

 

Figure 43 - Store shape 

As indicated in Figure 44, a Pool is shown as bottom-up pyramid with re-use marker.  

 

Figure 44 - Pool shape 

In an Activity Network diagram, DeliverableFlows are represented via a solid connector shape 

(see Figure 45). Also here, the name along the alongside the connector represents the name of the 

deliverable. Unlike connectors in a Role Collaboration diagram, in an Activity Network 

diagram there is no visualization of the distinction between Tangibles and Intangibles, and there 

is no indication of sequence number of the connector.   

 

Figure 45 - Connector shape for DeliverableFlow (in Activity Network diagram) 

In an Activity Network diagram, internalPortDelegations (see 7.2.1.1.3) are represented via 

a dotted connector shape (see Figure 46). Also here, the name along the alongside the connector 

represents the name of the deliverable.  

 

Figure 46 - Connector shape for internalPortDelegation (in Activity Network diagram) 

Both DeliverableFlows and internalPortDelegations are used in connection to Ports. 

The following table shows the shape for a Port, and its variations. These variations depend on whether 

the corresponding PortContainer is an Activity or Store, or whether it is a Collaboration, 

and furthermore, whether the Port is used as InputPort (see 7.2.4.3.3) or OutputPort (see 

7.2.4.3.2), and whether the Port carries a Condition or planningPercentage (see 7.2.4.3.1), 

whether the OutputPort carries ValueAdd(s) (see 7.2.4.3.2), and whether the Activity 

InputPort receives roleResource (see 7.2.1.2.3).  

Port 

Shape 

Port 
Container 

Shape 

description 

Shape placement Input or 

Output 

With 
Value 

Add 

With Condition 

and/or planning 
Percentage 

Provides role 

Resource for 
Role 

 

Activity, 
Store 

Small open 

rectangle  

On boundary of 

shape of Port 
Container  

 

Either -  -  -  

 

Small open 

rectangle, 

Either  -  √ -  



 102  

with splitter  

 

Small open 

rectangle, 

with thick 

boundary  

Input  -  -  √ 

 

Small open 

rectangle,  

with splitter 

and thick 

boundary  

Input  -  √ √ 

 

Small filled 

rectangle  

Output  √  -  -  

 

Small filled 

rectangle,  

with splitter  

Output  √ √ -  

 

Collabora

tion  

 

Bottom-left 

open 

pyramid 

Free-floating in 
Activity 

Network diagram of 
Collaboration  

Either  - -  -  

 

Bottom-left 

filled 

pyramid 

Output  √ -  -  

 

The following figures show the use of Ports in combination with DeliverableFlows and 

internalPortDelegations in Activity Network diagrams. 

Figure 47, Figure 48, Figure 49, and Figure 50 show the possible variations of Activity 

OutputPort shapes. The solid connector, connecting to the OutputPort, denotes a 

DeliverableFlow, and the name alongside the connector denotes the name of the deliverable, 

being the BusinessItem that is associated with the DeliverableFlow.  

 

Figure 47 - Shape of OutputPort, on boundary of Activity 

 

Figure 48 - Shape of OutputPort, with Condition, on boundary of Activity 

 

Figure 49 - Shape of OutputPort, with ValueAdd, on boundary of Activity OutputPort 



 103  

 

Figure 50 - Shape of OutputPort, with ValueAdd and Condition, on boundary of Activity 

Similarly, Figure 51, Figure 52, Figure 53, and Figure 54 show the possible variations of Activity 

InputPort shapes.  

 

Figure 51 - Shape of InputPort, on boundary of Activity 

 

Figure 52 - Shape of InputPort, with Condition, on boundary of Activity 

 

Figure 53 - Shape of InputPort, receiving roleResource, on boundary of Activity 

 

Figure 54 - Shape of InputPort, receiving role Resource, and with Condition, on boundary of Activity 

Figure 55, Figure 56, Figure 57, and Figure 58 show the possible variations of Store OutPort shapes. 

Similar shapes are used for Pools.  

 

Figure 55 - Shape of OutputPort, on boundary of Store 

 

Figure 56 - Shape of OutputPort, with Condition, on boundary of Store 

 

Figure 57 - Shape of OutputPort, with ValueAdd, on boundary of Store 



 104  

 

Figure 58 - Shape of OutputPort, with ValueAdd and Condition, on boundary of Store 

Figure 59 and Figure 60 show the possible variations of Store InPort shapes. Note that Stores do 

not apply any Capability, and hence do not require a variation of InputPort shape that denotes the 

receipt of roleResource.  

 

Figure 59 - Shape of InputPort, on boundary of Store 

 

Figure 60 - Shape of InputPort, with Condition, on boundary of Store 

The shape of a Collaboration InputPort, as connected via an internalPortDelegation, is 

shown in Figure 61. The text that is placed outside the shape indicates the name of the 

BusinessItemLibraryElement that is associated as inputDefinition (see 7.2.4.3). When an 

Activity Network diagram is shown in a particular DelegationContext (see 7.2.3.2.3), the text 

indicates the name of the BusinessItem that is associated as deliverable with the 

DeliverableFlow that connects to the InputPort that is delegated to the Collaboration 

InputPort.  

 

Figure 61 - Shape of Collaboration InputPort, connected to internalPortDelegation 

Figure 62 shows the shape of a Collaboration OutPort, as connected via an 

internalPortDelegation. The text that is placed outside the shape indicates the name of the 

BusinessItemLibraryElement that is associated as outputDefinition (see 7.2.4.3). When 

an Activity Network diagram is shown in a particular DelegationContext (see 7.2.3.2.3), the 

text indicates the name of the BusinessItem that is associated as deliverable with the 

DeliverableFlow that connects to the OutputPort that is delegated to the Collaboration 

OutputPort. 

 

Figure 62 - Shape of Collaboration OutputPort, connected to internalPortDelegation 

Figure 63 shows the shape of a Collaboration OutPort, carrying ValueAdd. Also this Port is 

shown as connected via an internalPortDelegation. 



 105  

 

Figure 63 - Shape of Collaboration OutputPort, with ValueAdd, and connected to internalPortDelegation 

 

Figure 64 provides a simple example of an Activity Network diagram.  

 

Figure 64 - Activity Network diagram (simple example) 

Another simple Activity Network diagram, demonstrating the application of a partly different set of 

elements, is given in Figure 65. 

 

Figure 65 - Activity Network diagram (simple example) 

Note that both a Role Collaboration diagram and an Activity Network diagram can provide 

(synchronized) views on the same underlying model of a Collaboration. Figure 66 extends the 

Role Collaboration diagram example (of Figure 35) by also showing the Activity Network diagram 

of the same BusinessNetwork. Note that the DeliverableFlow that conveys “Order” is not 

shown in the Role Collaboration diagram, as it does not denote transfer of deliverable between 

Roles.  



 106  

 

Figure 66 - RoleCollaboration and ActivityNetwork as synchronized views (example) 

8.5 Collaboration Structure 
Figure 67 shows the shape, a squared corner rectangle, by which a Collaboration is shown in a 

Collaboration Structure diagram. 

 

Figure 67 - Collaboration shape 

A BusinessNetwork, being a specialized Collaboration, is shown via a Collaboration 

shape with a BusinessNetwork marker (see Figure 68).  

 

Figure 68 - BusinessNetwork shape 

An OrgUnit, being a specialized Collaboration, is shown via a Collaboration shape with an 

OrgUnit marker (see Figure 69).  

 

Figure 69 - OrgUnit shape 



 107  

A CapabilityMethod, being a specialized Collaboration, is shown via a Collaboration 

shape with a CapabilityMethod marker (see Figure 70).  

 

Figure 70 - CapabilityMethod shape (in Collaboration Structure and Capability Management diagrams) 

A Community, being a specialized Collaboration, is shown via a Collaboration shape with a 

Community marker (see Figure 71).  

 

Figure 71 - Community shape 

In a Collaboration Structure diagram, a Role, not assigned to a Collaboration is shown as a 

Role oval (the same shape as indicated in Figure 30). 

Containment of a Role in a Collaboration is shown by the solid connector as represented in Figure 

72. 

 

Figure 72 - Role containment connector 

When a Role, as contained in a Collaboration (e.g., the OrgUnit MyCompany in Figure 73), is 

assigned to another Collaboration (e.g., the OrgUnit R&D in Figure 73), the Role containment 

connector connects to a small oval shape, representing that Role, adjacent to the boundary of the 

Collaboration at the Participant’s end of the connector.  The name of the Role is placed 

outside the Role shape.  

 

Figure 73 - Collaboration structure, with Role of parent Collaboration assigned to sub-Collaboration 



 108  

Figure 73 shows how a Collaboration Structure diagram is capable of representing an organization 

structure, based on the VDML metamodel. Collaboration Structure diagram is more universal than 

only applicable to organization structure however (see the example in Figure 76).  

As indicated in Figure 74, in a Collaboration Structure diagram, Assignment of a Role to 

another Role or to an Actor (possibly dynamically determined based on roleResource, see 

7.2.1.2.3), is shown as dashed directed connector.  

 

Figure 74 - Role Assignment connector 

Figure 75 visualizes Assignment of a Role to an Actor. The Actor is represented by its name 

only.  

 

Figure 75 - Actor assigned to Role 

Figure 76 provides an example of a Collaboration Structure diagram.  

 

Figure 76 - Collaboration Structure diagram (example) 

8.6 CapabilityLibrary 
As indicated in Figure 77, in a CapabilityLibrary diagram, a Capability (see 7.2.5.3) is shown 

as square corner rectangle.  



 109  

 

Figure 77 - Capability shape (in CapabilityLibrary diagram) 

The relationship between parentCapability and childCapability (see 7.2.5.3) is shown via 

containment of the childCapability within the boundary of its parentCapability (see Figure 

78).  

 

Figure 78 - Capability hierarchy 

Figure 79 shows the shape of a Capability with expand button.   

 

Figure 79 - Capability shape with expand button (in CapabilityLibrary diagram) 

When the shape of a Capability is expanded (via the expand button), the shapes of its 

childCapabilities are shown as embedded (i.e., contained within its boundary). Alternatively its 

childCapabilities can be represented on a separate CapabilityLibrary diagram.  

As Figure 80 indicates, a Capability shape that shows as expanded, can be collapsed via its expand 

button (shown with “-“ marker, indicating that the Capability is shown as expanded).  

 

Figure 80 - Expanded parent Capability, with sub-Capability 

Figure 81 shows an example of a CapabilityLibrary diagram.  



 110  

 

Figure 81 - CapabilityLibrary diagram (example) 

8.7 Capability Heatmap 
The notation of a CapabilityLibrary diagram can be re-used, and further refined, to support 

Capability Heatmaps.  

Figure 82 visualizes Capability hierarchy in a way similar as is indicated in Figure 78. The thick 

boundaries of Capabilities “Child1” and “Parent” denote that one or more “Child1”-corresponding 

CapabilityOffers (see 7.2.2.3.3) have their heatIndex equal to or above heatThreshold (see 

7.2.3.2.2).   

 

Figure 82 - Capabilities with heatIndex about HeatThreshold (in Capability Heatmap) 

A normal boundary (as for Capability “Child2”) indicates that heatIndex of related 

CapabilityOffers is below heatThreshold.  

8.8 Capability Management 
CapabilityOffers are shown in a CapabilityManagement diagram. Their shape is a stretched 

hexagon, with the CapabilityOffer’s name placed inside.  



 111  

 

Figure 83 - CapabilityOffer shape 

A dashed connector (see Figure 84) is used to represent the association between a CapabilityOffer 

and a CapabilityMethod (referenced as method) or a Store or Pool (referenced as 

capabilityResource) that supports it (see 7.2.2.3).  

 

Figure 84 - Shape of connector between CapabilityOffer and a capabilityResource or method 

In a Capability Management diagram, an OrgUnit is shown as square corner rectangle, with name 

label placed on its boundary. CapabilityOffers, representing the Capabilities that are 

provided by the OrgUnit, are placed on its boundary as well (see Figure 85). An expand button is used 

to expand the OrgUnit (the “+” marker in the expand button in Figure 85 indicates that the OrgUnit is 

shown as collapsed.  

 

Figure 85 - CapabilityOffers on boundary of OrgUnit, with expand button (in: Capability Management 
diagram) 

Figure 86 shows the same OrgUnit as expanded. When expanded, CapabilityMethods and 

Stores (or Pools) that support the CapabilityOffers, are shown as contained within the 

OrgUnit’s boundary. When the OrgUnit is expanded, its Position Roles that are assigned to 

(sub-) OrgUnits, are shown within the OrgUnit’s boundary as well, to facilitate navigation to 

Capability Management diagrams of these sub-OrgUnits. For reasons of diagram scalability, 

Positions that are associated with Pools (see 7.2.2.3), SHOULD NOT be shown as contained within 

the OrgUnit’s boundary (note that there may be many such Positions). Positions that are not 

(yet) assigned to Participants MAY be shown inside the boundary.  



 112  

 

Figure 86 - OrgUnit expanded (in: Capability Management diagram) 

CapabilityOffers of one OrgUnit might be supported by CapabilityMethods or Stores 

(or Pools) that are owned by other OrgUnits. Figure 87 shows this, in a situation where both the 

OrgUnit that owns a CapabilityOffer and the OrgUnits that own the 

CapabilityMethod(s) and/or Store(s) (or Pool(s)) that support it, are included in the same 

Capability Management diagram.   

 

Figure 87 - CapabilityOffers of OrgUnit with capabilityResource and method from other OrgUnit 

An alternative way of modeling is provided in Figure 88: Though the CapabilityMethod(s) and/or 

Store(s) (or Pool(s)) that support CapabilityOffer(s) of another OrgUnit are represented 

in the Capability Management diagram of the CapabilityOffer(s)-owning OrgUnit, the 

OrgUnit(s) that own these CapabilityMethod(s) and/or Store(s) (or Pool(s)) are not 

represented in that diagram.  



 113  

 

Figure 88 - CapabilityOffers of OrgUnit with capabilityResource and method from other OrgUnit (not shown) 

A CapabilityMethod, supporting a CapabilityOffer, might depend on other 

CapabilityOffers. It can depend on another CapabilityOffer when it contains one or more 

Activities, to which the other CapabilityOffer is applied (see 7.2.1.2.1).  

Optionally this dependency can be visualized in a Capability Management diagram, as a dotted 

connector (see Figure 89).  

 

Figure 89 - Connector shape for dependency of CapabilityMethod on other CapabilityOffer(s) 

Figure 90 shows a Capability Management diagram, where one CapabilityMethod depends on 

three CapabilityOffers, whereby these dependencies are visualized by the dotted connector of 

Figure 89.  

 

Figure 90 - Dependencies of CapabilityMethod on CapabilityOffers of methodOwner and other OrgUnits 

Figure 91 provides an example of a Capability Management diagram.   



 114  

 

Figure 91 - Capability Management diagram (example) 

8.9 Measurement Dependency 
SMM specifies MeasurementRelationships between Measurements. These relationships 

represent aggregations, rankings or other transformations, dependent on the particular semantics of the 

various types of Measurements (and their underlying Measures) as specified by SMM. VDML 

associates Measurements (as specified by SMM) to MeasuredCharacteristics of 

MeasuredElements (e.g., Activities, Ports, Stores, Collaborations, ValueAdds, 

ValuePropositions, ..). Different AnalysisContexts (see 7.2.3.2.1), via their Obervation 

(as specified by SMM) may enforce different Measurements on the same 

MeasuredCharacteristic. Per AnalysisContext, or per Scenario (including all 

AnalysisContexts in its AnalysisContext tree), MeasurementRelationships between 

MeasuredCharacteristics can be shown in a Measurement Dependency diagram. A 

Measurement Dependency diagram supports understanding of how Measurements “influence” 

other Measurements, and thus facilitates detection of root-causes for lack of value contribution or 

recipient’s satisfaction with value (as defined in a ValueProposition). A Measurement 

Dependency diagram may also be helpful in visualizing and analyzing simulation results, based on a 

Scenario in a ValueDeliveryModel. 

In a Measurement Dependency diagram, a MeasuredCharacteristic (see 7.2.4.1.5) is denoted 

by a thin-boundary rectangle shape (see Figure 92).  

 

Figure 92 - MeasuredCharacteristic shape (in Measurement Dependency diagram) 

Revision of includes adding a property influence to MeasureRelationship (the class in SMM 

that “types” MeasurementRelationships). This is a property with enumeration type Influence, 

having enumerated values "positive" and "negative." “Positive” means that, when a 



 115  

baseMeasurement’s value increases, the value of the Measurement on the other end of the 

MeasurementRelationship will also increase. “Negative” means that, when a 

baseMeasurement’s value increases, the value of the Measurement on the other side of the 

MeasurementRelationship will decrease.  

In a Measurement Dependency diagram, a MeasurementRelationship (as specified by SMM), 

between Measurements of two MeasuredCharacteristics is denoted by a thin and solid 

connector. A connector with a marker that contains a “+” symbol denotes a “positive” influence (see 

Figure 93)  

 

Figure 93 - Shape of MeasurementRelationship, with “positive” influence   

A connector with a marker that contains a “-” symbol denotes a “negative” influence (see Figure 94).  

 

Figure 94 - Shape of MeasurementRelationship, with “negative” influence   

Figure 95 provides an example of a Measurement Dependency diagram.  

 

Figure 95 - Measurement Dependency diagram (example) 



 116  

Annexes  
 

Normative annexes are integral parts of the standard. An annex’s normative status (as opposed to 

informative) shall be made clear by the way in which it is referred to in the text and under the heading of 

the annex. 

Informative annexes give additional information intended to assist the understanding or use of the 

standard and shall not contain provisions to which it is necessary to conform in order to be able to claim 

compliance with the standard. Their presence is optional. An annex’s informative status (as opposed to 

normative) shall be made clear by the way in which it is referred to in the text and under the heading of 

the annex. 

The following Annexes are included: 

Annex A:  Glossary 

Annex B:  Alignment with Existing Business Modeling Techniques 

Annex C: Use Cases   



 117  

Annex A:  Glossary 
(Normative) 

 
Each definition indicates if it is VDML-specific (it’s source being VDML), or its origin from another 

source. Several terms that are listed in the glossary denote commonly known concepts that have origins 

from outside VDML. VDML avoids introducing new terms unnecessarily, but uses terms that people can 

relate to. While the concepts are consistent, VDML provides definitions that are clear and in the context 

of a VDML model.  This ensures that both implementers and users will have a clear and consistent 

understanding of VDML concepts and their relationships. 

Activity. Work contributed to a collaboration by a participant in a Role of the collaboration.  A role may 

be filled by another collaboration and a role may contribute to multiple activities in the same 

collaboration (source: VDML; example of use of term outside VDML: Osterwalder (2004)). 

Activity network.  A network of activities of participants in a collaboration that are lined by deliverable 

flows (source: VDML). 

Actor. An individual (indivisible) participant, which might be human (a person) or non human (e.g., a 

software agent or machine) (source: VDML; example of use of term outside VDML: Gordijn and 

Akkermans (2003)).  

AnalysisContext.  An AnalysisContext defines a set of measurements associated with a particular use of 

a collaboration or a store used as a decoupling point between collaborations.  When an activity delegates 

to a collaboration, an AnalysisContext, specialized as Delegation Context,defines the delegations of 

activity inputs and/or outputs to/from collaboration inputs and/or outputs, and may define assignments of 

roles within the collaboration (source: VDML). 

Attribute.  An attribute allows information to be attached to any VDML element in the form of a name-

value pair.  Attributes provide a simple mechanism to add user defined information to model elements 

(source: VDML).  

Business Item. A business item is anything that can be acquired or created, that conveys information, 

obligation or other forms of value and that can be conveyed from a provider to a recipient.  For example, 

it includes parts, products, units of fluids, orders, emails, notices, contracts, currency, assignments, 

devices, property and other resources (source: VDML).  

Business Model. A business model describes the rationale of how an organization creates, delivers, and 

captures value (source: Osterwalder and Pigneur (2010). Lindgren (2011).). 

Business Network. A collaboration between independent business (or economic) entities, potentially 

companies, agencies, individuals or anonymous members of communities of independent business 

entities, participating in an economic exchange (source: VDML; example of use of term outside VDML:  

Vervest et al. (2009)). 



 118  

Capability. Ability to perform a particular kind of work and deliver desired value (source: VDML; 

examples of use of term outside VDML: Osterwalder (2004), SoaML (2012), ITIL (2011)). 

Capability Method. A collaboration specification that defines the activities, deliverable flows, business 

items, capability requirements and roles that deliver a capability and associated value contributions. For 

each application of the capability method, within a scenario or in multiple scenarios, there may be distinct 

measurements of performance and value contributions, and role assignments suitable to the application 

context.  A capability method does not own resources but receives them from other sources in the course 

of performing its activities (source: VDML).  An activity does not delegate directly to a capability method 

but engages it through its organization unit based on a capability offer. 

Channel. Mechanism to execute a deliverable flow, such as e-mail, face-to-face conversation, SOAP, 

REST, physical transportation, postal service, telephone, fax, FTP, etc. (source: VDML). 

Characteristic.  Distinguishing feature or quality that can be qualified or quantified by applying a 

measure (popularized version of definition in SMM (2012)). 

Collaboration. Collection of participants joined together for a shared purpose or interest (source: VDML; 

examples of use of term outside VDML: SoaML (2012), BPMN (2011)). 

Community. A loose collaboration of participants with similar characteristics or interests (source: 

VDML; examples of use of term outside VDML: Weill and Vitale (2001)). 

Delegation Context. A specialized AnalysisContext, set by an activity and in which the activity delegates 

its work to a collaboration. A delegation context also defines the delegations of activity inputs and/or 

outputs to/from collaboration inputs and/or outputs, and may define assignments of roles within the 

collaboration (source: VDML). 

Deliverable. Product or service defined by an associated business item that is produced by an activity or 

delivered from a store that can be conveyed to another activity or store (source: VDML; example of use 

of term outside VDML: Allee (2008), ITIL (2011)). 

Deliverable Flow. The transfer of a deliverable from a provider (or producer) to a recipient (or consumer) 

(source: VDML). 

Intangible. Deliverable that represents something that is unpaid or non-contractual that makes things 

work smoothly or efficiently (as opposed to Tangible) (source: VDML; example of use of term outside 

VDML: Allee (2008)). 

Measure. A method that is applied to characterize an attribute of something by assigning a comparable 

quantification or qualification (popularized version of definition in SMM (2012)). 

Measurement. The result of applying a measure (popularized version of definition in SMM (2012)). 

Organization. An administrative or functional structure normally interpreted as a network of 

Organization Units at a higher level in an organizational hierarchy (source: VDML; example of use of 

term outside VDML: ITIL (2011)).  



 119  

Organization Unit (or: OrgUnit). An administrative or functional organizational collaboration, with 

responsibility for defined resources, including a collaboration that occurs in the typical organization 

hierarchy, such as business units and departments (and also the company itself), as well as less formal 

organizational collaboration such as a committee, project, or task force (source: VDML; example of use 

of term outside VDML: Zachman framework, as introduced by Zachman (1987), and Sowa and Zachman 

(1992), though a formal definition of the term seems to be omitted). 

Participant. Anyone or anything that can fill a role in a collaboration. Participants can be actors (human 

or automatons) or collaborations or roles of actors or collaborations. They maybe named in the model, or 

dynamically determined in run-time (source: VDML; example of use of term outside VDML: Allee 

(2008)).  

Pool. A store that contains re-usable resource, i.e., resource that is returned to the pool after having been 

used, so that it is again available for use (source: VDML; example of use of term outside VDML:  

PMBOK (2000)). 

Practice. Proven way to handle specific types of work and that have been successfully used by multiple 

organizations (source: VDML; examples of use of term outside VDML: BPMM (2008), ITIL (2011)).  

Process. A sequence or flow of Activities in an organization with the objective of carrying out work 

(source: BPMN (2011)).  VDML does not represent process, per se, but represents a process abstraction 

with a network of activities and flows that represent dependencies and statistical characteristics of a 

process. 

Resource. Anything that is “used” or “consumed” in the production of a deliverable (source: VDML; 

example of use of term outside VDML:  Hruby et al. (2006)). 

Role. An expected behavior pattern or capability profile associated with participation in a collaboration 

(source: VDML; example of use of term outside VDML: Allee (2008)). 

Scenario. A scenario defines a consistent business use case and set of measurements of a value delivery 

model by specifying a, possibly recursive, AnalysisContext for elements in scope of that use case. The 

nesting of contexts allows a collaboration to be used as a sub-collaboration by more than one activity, 

each of which sets its particular delegation context and measurements (source: VDML). 

Service. A service is a mechanism to enable access to one or more capabilities, where the access is 

provided using a prescribed interface and is exercised consistent with constraints and policies as specified 

by the service description (source: SOA-RM (2006)). 

Store. Represents a container of resource. The resource that is stored is identified by a business item 

(source: VDML; common concept in data flow diagrams (DFD), also known as Gane-Sarson diagrams, as 

proposed and applied by Gane and Sarson (1979); common construct in simulation systems, such as 

GoldSim, as explained in GoldSim (2010, 1) and GoldSim (2010, 2); data store in BPMN (2011) is a 

similar construct, though with a more narrow meaning).  



 120  

Tangible. Deliverable that represents something that is contracted, mandated or expected by the recipient 

and which may generate revenue (as opposed to Intangible) (source: VDML; example of use of term 

outside VDML: Allee (2008)). 

Value. A measurable factor of benefit, of interest to a recipient, in association with a business item 

(source: VDML; example of uses of term outside VDML: Brodie and Gilb (2010), Gilb (2007), Gilb and 

Gilb (2011)). 

Value Chain. Set of activities that an organization carries out to create value for its customers (Porter 

(1985)). 

Value contribution.  A measurable effect of an activity that affects the level of satisfaction of one or 

more values in a value proposition (source: VDML). 

Value Delivery Model. Model that supports multiple scenarios for business analysis and design based on 

evaluation of performance and stakeholder satisfaction achieved through the activities and interactions of 

people and organizations using business capabilities to apply resources and deliver stakeholder values 

(source: VDML). 

Value Network. Any set of roles and interactions in which participants engage in both tangible and 

intangible exchanges to achieve economic or social good (Allee (2008) ). Or: Any web of relationships 

that generates both tangible and intangible value through complex dynamic exchanges between two or 

more individuals, groups or organizations (Allee (2003)).  

Value Proposition. Expression of the values offered to a recipient evaluated in terms of the recipient’s 

level of satisfaction (source: VDML; examples of use of term outside VDML: Ballantyne et al. (2008), 

Osterwalder (2004), Johnson et al. (2010)). 

Value Stream. The network of activities that includes resources, value contributions and capabilities to 

determine a value proposition for a customer who may be the ultimate customer or an internal end user of 

the result (source: VDML; example of use of term outside VDML: Whittle and Myrick (2005)).   

  



 121  

Annex B:  Alignment with Existing Business 

Modeling Techniques 
(Informative) 

Overview 

The following sub clauses describe the alignment of VDML concepts with the following, existing 

business modeling techniques: 

 Value Networks 

 Resources, Events, Agents (REA) 

 e
3
value 

 Capability map 

 Value Stream 

 Cube Business Model 

 Possession, Ownership, Availability (POA) 

 VDML Support for BMM Strategic Planning 

 VDML for Balanced Scorecard and Strategy Map 

 VDML Relationship to BPMN 

These sub clauses demonstrate the ability of the VDML metamodel to support the models of these 

techniques.  Tables are sorted, alphabetically, by concept names of the particular modeling technique. 

Value Networks 
Value Network Analysis (VNA) is an integrative modelling technique for analysis of business activity  

(Allee 2003, 2008).  It defines the specific Roles in a collaboration and their interactions that create value 

through the exchange of Deliverables. Roles and deliverables are made visible through visual graphs. 

Analyses include cost/benefit, value realization, perceived value and internal and external value impact.  

The goal of the method is to increase and/or optimize value outputs, to leverage financial and non-

financial resources (including intangible assets) for improving financial and organizational performance, 

to find new value opportunities and to improve operational performance and flows of value.  

A Value Network Analysis begins with descriptions of contributing roles and value transactions 

visualized as a graph or map. Nodes represent roles, and directional arrows between nodes describe 

transactions. Each transaction has an attribute of tangible or intangible deliverable in the network. Roles 

are filled by Participants in the network, which can be individuals or firms. Multiple Participants may be 

candidates for a Role and a Participant may play multiple roles.  

Typically solid lines indicate contractual, tangible revenue-generating or funding related deliverables and 

their directional transactions. Dashed lines show the critical intangible or informal deliverables such as 

knowledge exchanges and conveyed benefits that build relationships and keep things running smoothly.  

Figure 96, below, shows a value network for interactions of a technology provider with other business 

entities.  Similar networks describe interactions between roles at different levels of operational detail 

within a business entity. 



 122  

 

Figure 96 - Value Network Map or Graph 

 

Table 2 shows the alignment of VNA concepts to VDML concepts.  Only corresponding VDML concepts 

are included in the table.  See Annex A:  Glossary for further VDML definitions.  

Table 2 - Mapping of VNA Concepts to VDML Concepts 

VDML Concept VNA Concept Remarks 

Activity Activity In VNA, an activity defines the boundary and focus of a 

value network or sub network and can include multiple 

actions, roles, deliverables sequences and processes. In 

VDML the boundary of a network of roles and activities 

is referred to as a collaboration whereas an activity 

describes work of a single role within the collaboration. 

(See activity network below). 

Attribute Attribute In VDML a user-defined, name-value pair associated 

with a model element. VNA definition is compatible.   

 

Channel Channel Definitions are the same. 

Deliverable  Deliverable Definitions are the same 

Intangible Intangible Definitions are the same 

Measure Measure Definitions are the same 

Measurement Measurement Definitions are the same 

Actor Participant In VNA Participant and Actor are used interchangeably. 

In VDML an actor is an entity that does work while a 

participant can be an actor, a collaboration or a role. 

Participant Participant Definitions are the same  

Resource Resource or Asset Definitions are the same. In VNA resources may include 

intangible assets such as human competence, brand, 



 123  

relationships, reputation, and methods. Also see Value 

Realization. In VDML, resources are conveyed by 

deliverable flows while measurements of values (e.g., 

duration and quality) are conveyed by value 

adds/contributions.   In VNA resources are made 

available to roles, who manage them in regard to the 

deliverables they are responsible for generating or 

handling as inputs. In VDML, control of resources is 

more specific, using stores, activities of roles and 

deliverable flows. 

Role Role Definitions are the same 

Scenario Scenario Definitions are compatible. 

Tangible Tangible Definitions are the same 

Deliverable Flow Transaction  Concepts are the same. See Process 

Value Value Definitions are the same 

Activity network Value network 

 

Definitions are compatible. In VNA, a value network 

depicts interactions of roles and the flow of deliverables 

between them.  In VDML an activity network depicts the 

activities of the roles (more detail) and the flow of 

deliverables between them. 

Collaboration Value Network Any collaboration can be modeled as a value network. 

All value networks are collaborations.  In VDML, 

business network, community, organization unit and 

capability method are specializations of collaboration.  In 

VDML an activity is distinguished from a collaboration 

such that an activity can delegate to a shared 

collaboration. 

Value proposition  Value realization In VNA, value realization is when a value input, either 

tangible or intangible, has a positive impact on or 

replenishes resources or assets.  In VDML a value 

proposition conveys to a recipient deliverable(s) with a 

bundle of values that can become inputs to subsequent 

activities of the recipient. 

 

REA (Resources Events Agents) 
William McCarthy developed the REA model in 1982 as a generalized accounting framework, but later 

evolved it together with Guido Geerts into an ontology for economic systems, covering value delivery 

among networks of economic agents Geerts, McCarthy (2002), McCarthy (1987).   

Figure 97, below, depicts exchanges between three economic agents and a value conversion within an 

enterprise, in the REA model. It shows the relationships between economic resources, economic events 

and economic agents.  The REA ontology describes the economic principles of trade and production 

business processes, i.e., the use, consumption, production and exchanges of economic resources. One of 

the fundamental REA concepts is duality, explaining what resources an agent gives up in order to receive 

other resources. Duality also represents causality relationship, explaining why economic events happen 

from the economic point of view.  From an agent’s entrepreneurial perspective and over the lifetime of 



 124  

the enterprise, the received resources must have a higher value than the provided resources. A business 

process is a set of economic events related by the duality relationship.  

«conversion process» Production

«exchange process» Sales

«economic resource»

Item

«economic event»

Production of 

Item

«produce»

«economic event»

Sale of Item

«economic event»

Cash Receipt

«stockflow» «duality»

«stockflow»

«economic event»

Consumption of 

Raw Material

«economic resource»

Raw Material

«consume»

«economic event»

Cash 

Disbursement

«economic event»

Raw Material 

Purchase

«duality» «stockflow»

«economic resource»

Cash

«stockflow»

«duality»

«economic agent»

Vendor

«economic agent»

Enterprise

«receive»

«provide»

«provide» «receive»

«exchange process» Purchase

«economic agent»

Customer

«economic agent»

Enterprise

«receive»
«receive»

«provide»

«provide»

«provide»

«receive»

 

Figure 97 - Example of an REA Model 

 

The REA ontology also contains rules for verifying completeness of the model, i.e., every REA model 

must specify who are the provider and recipient of every exchanged resource, how an agent receives and 

gives up each of its resources, and why events happen. The REA ontology does not specify notation – any 

data modeling technique can be used to describe REA models. Figure 97, above, illustrates an REA 

model in the UML notation.  

Scope of the REA model is determined by granularity of economic resources (a resource can contain 

other resources), in contrast to VDML, where the scope is determined by granularity of a value 

proposition (defined as a value stream that may incorporate other value streams) where value streams may 

share capabilities) and collaboration, (a collaboration may contain other collaborations engaged in roles).  

The REA model also contains concepts for describing what could or should happen, i.e., commitments, 

contracts, schedules and policies.   

A mapping of REA concepts to VDML concepts appears in Table 3, below. 

 



 125  

 

 

Table 3 - Mapping of REA Concepts to VDML Concepts 

VDML Concept REA Concept Remarks 

Business network Business process In REA, a set of economic events related by a duality 

relationship.  In VDML a similar set of activities (events) 

are related as occurring within the context of a business 

network. 

Business network Contract Contract extends the business network concept to a 

formal agreement, i.e., characteristic of a specific 

business network. 

Business network Exchange In VDML, business network collaboration defines the 

scope of an exchange between parties.  In VDML, there 

can be business networks that are within business 

networks, so more complex business networks can be 

composed of more discrete networks. 

Value proposition Commitment Extends value proposition concept as an obligation, i.e., 

interpretation of a value proposition as an obligation. 

Duality Duality A property of an economic exchange by which each 

contributor to an exchange receives compensation for its 

contribution.  Is an observed property of a VDML 

business network. 

Store or capability Economic  resource In REA, something of economic value that is purchased, 

sold, produced, used or consumed.  A capability can be 

represented as a resource that provides a service.  In 

VDML, a store holds resources.  A resource flows as a 

business item.  Business items also may convey other 

things such as orders, specifications, etc., that are input 

or output of activities. 

Party role (Business 

network) 

Economic agent Consistent with contract party and may be an actor or an 

organization.  Within a business entity, there will be 

other, more  specific  economic agents that may be 

represented as  OrgUnits or Actors that are in the  

organization structure of the primary economic agent 

(e.g., company). 

Activity Economic event Economic event may be a single VDML activity or an 

activity that delegates to a collaboration of more detailed 

activities. In REA, economic events are atomic and 

cannot be decomposed – REA model granularity is 

determined by granularity of economic resources. 



 126  

Capability method 

or practice 

Policy In REA, a policy defines restrictions on patterns of 

activities.  There is no directly equivalent element in 

VDML except that a capability method might be 

designated as a required method.  A planning percentage 

may be used to determine the percentage of the time a 

port/deliverable is the output of an activity and thus 

could represent the effect of business rules. A practice 

refers to a generally accepted approach to doing a type of 

work and a capability method may be identified as 

conforming to a practice, but the details of a practice are 

not expressed in VDML, per se. 

Deliverable flow  

(Role) 

Provide and Receive In VDML, exchanges between activities are via 

DeliverableFlows.  An abstraction can show 

DeliveableFlows as between the roles of the activities 

where DeliverableFlows will not appear between 

activities for the same role. 

Deliverable flow  

(Store) 

Stockflow Deliverable flow is not restricted to resources, nor to 

input or output of store. 

Role association Responsibility Responsibility is a relationship of a role.  A role may be 

filled by a participant (another role, actor or 

collaboration). 

Value Value In REA the focus is on economic value and is determined 

through the execution of an exchange and will depend on 

the provider or recipient’s perspective.  In VDML value 

is a measurable characteristic of the product or service 

delivered to a recipient and includes economic value 

(price/cost), but also includes many other factors such as 

reliability, timeliness, appearance, and provider’s 

reputation that will be evaluated from the perspective of 

the recipient. 

e3value 
This modeling language for evaluation of the viability of e-commerce business models or value 

constellations, e
3
value, as presented by Gordijn and Akkermans (2003, 2004), represents a group of 

economically independent entities, including market segments, that exchange transactions with economic 

value for mutual benefit.  This seems straightforward, but in e-commerce the number of entities, their 

different interests and multiple exchanges can obscure the net value realized by the different participants.  

Each of the participants must have a sustainable business model for the overall exchange to be viable. 



 127  

 

Figure 98 - Example of an e
3
value Model 

Figure 98, above, illustrates an example e
3
value model.  Table 4, below, aligns the more detailed e

3
value 

concepts with VDML concepts. 

Table 4 - Mapping of e
3
value Concepts to VDML Concepts 

VDML Concept e
3
value Concept Remarks 

Actor/collaboration Actor In e
3
value, an actor is restricted to an economically 

independent entity.  An economically independent entity 

in VDML may be an actor or a collaboration.  The 

collaboration will generally be specialized as a 

community (representing a set of potential actors such as 

a market segment) or an organization unit such as a 

company. 

Business network Composite actor  A business network may have supporting business 

networks.  A supporting business network consists of 

parties working together to participate in a parent 

business network. 

Business network Constellation A collaboration/exchange of complementary transfers of 

value between independent business entities  

Deliverable flow Dependency element In e
3
value, a flow within a business entity.  In VDML, 

flows are between activities and roles (through activities) 

internally or externally. 

Community Market segment A market or market segment is a community of potential 

parties in a business network or other collaboration. 

Scenario Scenario Similar concept of applying different circumstances to 

evaluation of the viability of the model. 

Activity Value activity Value activity is a collection of operational activities 

which can be assigned as a whole to actors. 

Business network Value interface Not explicitly defined in VDML but is the aggregate of 

Consumer
Consumer

Consumer
Consumer

Manufacturer

Distributor

Retailer

GoodMoney

GoodMoney

GoodMoney



 128  

value propositions provided and received by one party in 

a business network.  So a business network determines 

the scope of value interface of each party. 

Business item Value object The thing that is provided or received, which is of 

economic value for at least one of the actors. 

Value proposition Value offering May be a value proposition as well as a value proposition 

that represents the aggregation of value propositions 

provided or received. 

Port Value port The point of departure or receipt of a value 

object/business item 

Unit of production Value transaction The set of value objects and transfers that represents a 

complete cycle of exchanges between parties in a 

constellation such that their net gain/loss can be assessed. 

Deliverable flow Value transfer Flow of  value between business entities (actors in 

e
3
value or parties in VDML) 

Capability Maps 
In recent years, considerable attention has focused on capability mapping.  A capability map defines a 

hierarchy of capabilities required for the enterprise to deliver the desired results along with assessment of 

the importance and performance of these capabilities.  The capability map is analyzed to identify those 

capabilities that require improvement—often called a capability “heat” map.   

A capability map, as used in capability analysis, defines a hierarchy of capabilities required for the 

enterprise to deliver the desired results along with assessment of the importance and performance of these 

capabilities.  The capability map is analyzed to identify those capabilities that require improvement—

often called a capability “heat” map, an example of a part of which is shown in Figure 99, below. 

According to Krohn (2011), the capability map is the framework for defining scope and analyzing impact. 

A capability is “what” the business does. By focusing on the what, the map becomes very stable. “How” 

something is done changes frequently; with every system implementation or process improvement, it is 

altered. However, what is done remains relatively the same, year after year. The map organizes these 

capabilities into a hierarchy, with each capability level providing progressively more detail. The hierarchy 

enables to start with a broad discussion and then dive into more detail where needed. Creating a capability 

map, containing commonly used or usable definitions of capabilities, with their associated detail, 

establishes a common vocabulary across the business. This will enforce productivity in design or re-

design of business models, and will facilitate discovery of opportunities to consolidate or outsource (or 

purposefully not doing so) capabilities. 

The core concepts of capability mapping—the capability definitions and capability hierarchy— map 

directly to the VDML capability definition and capability library. Figure 99, below, illustrates a typical 

capability heat map where critical capabilities are highlighted. There does not appear to be a generally 

accepted specification of additional detail to a capability map model, but VDML represents a number of 

related concepts that would generally be expected to support the capability map: the organization(s) that 

have and offer the capability, the activities performed to deliver the capability, the 

capabilities/organizations that use the capability, the resources consumed and deliverables produced by 

the capability, and the values contributed (at the activity level) by the capability. 



 129  

 

 

Figure 99 - Capability Heat Map 

Value Stream 
A value chain has been described as “a [disaggregation of] a firm into its strategically relevant activities 

in order to understand the behavior of costs and the existing potential sources of (competitive) 

differentiation” Porter(1985).  A value stream has been described as “an end-to-end collection of 

activities that create a result for a ‘customer’ who may be the ultimate customer or an internal ‘end user’ 

of the value stream” Martin (1995).  The focus in both cases is on delivery of value to a customer.  

VDML addresses both of these by supporting top-down, and industry or ecosystem analysis and 

decomposition of activities and their contributions to cost and value, and by supporting end-to-end detail 

of the contributions of activities to create a result for a customer, internal or external, as well as the 

exchanges of value in the marketplace.  The approach is up to the modeler.   

Value stream mapping, as explained by Rother and Shook (1998), is a lean manufacturing technique used 

to analyze and design the flow of materials and information required to bring a product or service to a 

consumer. Customer value is the leading motivation, and focus is on improving value, by reducing waste. 

It combines material flow (product produced) and information flow (e.g., sales orders or forecasts that 

trigger production).   Broader systems can be modeled via decoupling buffers or stores (called 

“supermarkets”). The focus is on improving operational performance via detection and elimination of 

non-value added (i.e., wasted) time.  

VDML supports all of these approaches.  There does not appear to be a generally accepted ontology for 

value stream modeling, but the concepts can be inferred.  In VDML, a value stream can be identified 

within a VDML model as the network of capabilities and their activities that contribute to the values and 

deliverables identified in a value proposition.  Essentially this is a backward trace from the value 

proposition and can extend to suppliers and outsourced capabilities/services. 



 130  

Business Model 
The following paragraphs discuss VDML alignment with both Lindgren’s and Osterwalder”s business 

model frameworks.  These both provide a high-level abstraction of what an organization does to achieve 

its purpose. 

Lindgren 

A business model describes how an organization creates, captures, delivers, and consumes value from the 

perspective of primary stakeholders. Peter Lindgren defines seven building blocks of a business model: 

value proposition, user and consumer, value chain, competencies, network, relations and value formula, 

Lindgren (2011). These are depicted in Figure 100 below (relationships are in the middle).  

 

Figure 100 - The Business Model Cube (Lindgren) 

 

All of these building blocks and their related components can be described in terms of more detailed 

VDML model elements focusing primarily on the business network level of value exchanges with 

business partners and customers, but supported by the value streams that identify capabilities, resources, 

costs and values.  Table 5, below, outlines the relationship of Lindgren’s seven components to VDML 

concepts. 

Table 5 - Mapping of Business Model Cube Concepts to VDML Concepts 

VDML Concept Business Model 

Cube Concept 

Remarks 

Capabilities Competencies Competencies in BM may be more general, including 

resources and methods. 

Business network Network Network in BM includes business partners where the 

relationships may not be restricted to particular business 

exchanges.  In VDML, a business network can define a 

range of business relationships or it may be restricted to 

the parties involved in a particular set of related 

exchanges. 

Deliverable flows Relations Relations in the BM Cube link internal activities and 

capabilities with the external BM components.  VDML 



 131  

deliverable flows define these relations as well as 

external exchanges within a business network context. 

Party User and customer In BM cube framework user would refer to parties that do 

not pay economically for the value proposition offered by 

the Business Model; customer would most often refer to a 

typical customer in a market or market segment.  In 

VDML, a customer is a particular party in a business 

network and may be one of a community of potential 

customers.  Users can be represented as other 

community(s). related to customer(s), possibly as a 

business network collaboration.  

Value stream Value chain The concept of a value stream is not an explicit element 

in VDML, but is the network of activities and capabilities 

that contribute to the deliverable(s) and values of a value 

proposition. 

Measure Value formula (Profit 

formula) 

In VDML, a measure defines how a measurement is 

determined.  Here, a measure may be a formula that 

combines certain factors from the model to provide a 

profit measurement (the result of applying the formula). 

Value proposition Value proposition Same concept but more detailed in VDML 

 

Osterwalder 

Alex Osterwalder (2004, 2010) defines nine components: customer segments, customer relationships, 

distribution channels, revenue streams, value propositions, key activities, key resources, cost structure and 

key partners.  These are depicted in Osterwalder’s graphic in Figure 101, below.  

 



 132  

Figure 101 - The Business Model Canvas (Osterwalder) 

All of these components can be described in terms of more detailed VDML model elements focusing 

primarily on the business network level of value exchanges with business partners and customers, but 

supported by the value streams that identify capabilities, resources, costs and values.  Table 6, below, 

outlines the relationship of Lindgren’s seven components to VDML concepts. 

Table 6 - Mapping of Business Model Canvas Concepts to VDML Concepts 

VDML Concept Business Model 

Canvas Concept 

Remarks 

Channel Channel In VDML, a deliverable flow with channel attribute to 

define the mechanism of flow, e.g., telephone, email, 

postal service, etc.  In BM Canvas, flows typically are to 

customers. 

Value contribution 

component (cost) 

Cost structure In BM Canvas, cost structure describes all costs to 

operate the business.  In VDML, cost per unit of 

production is one value that is captured for activities.  

The VDML model would support aggregation of costs for 

a capability by reference to the activities that use that 

capability.  The cost to the enterprise would require 

multiplying the cost per unit of production by associated 

production volumes (by activity).  This can be user 

defined, and could be computed for a value proposition 

component. 

Collaboration Customer 

relationships 

In BM Canvas, customer relationships are approaches to 

engaging customers leading to business exchanges.  In 

VDML, collaborations can be defined to represent 

different types of customer relationships including 

collaboration with automated and non automated services 

and collaboration within communities. 

Community Customer Segment In VDML, different customer segments are represented 

by different communities where a business network will 

typically engage a typical member as a party in the 

network 

Capability Library Key activities In BM Canvas, key activities refer to  the most important 

things a company must do.  In VDML, the core things a 

company does are identified as capabilities in a capability 

library (taxonomy of capabilities).  Key capabilities 

would highlight those of primary importance.  A 

capability heat map might be used to highlight the key 

capabilities (i.e., activities).  These would likely be 

capabilities at higher (broader) levels in the taxonomy. 

Business network Key partnerships In BM Canvas, key partnerships refer to the network of 

suppliers and partners necessary for successful operation 

of the business.  In VDML, a broad business network 

may represent relationships and key deliverable 

exchanges with multiple partners and suppliers.  Sub-

business networks can be used to represent different BM 

Canvas types of partnerships: Strategic, co-opetition, 

joint venture, and buyer-supplier. 



 133  

Capability Key resources The focus of BM Canvas is resources required to perform 

including facilities, people, money, etc.  In VDML, a 

capability includes key resources as well as the activities 

to apply the capability and produce value. 

Business network Revenue stream In BM Canvas, revenue stream is a flow of income from 

a product or service minus the cost of the product or 

service.  In VDML, the price/revenue and the cost are 

attributes of value propositions exchanged with other 

parties in a business network. 

Value proposition Value proposition Same concept. BM Canvas refers to value propositions 

offered to the market, while VDML expands the concept 

to value propositions offered between roles in a 

collaboration. 

 

Possession, Ownership, Availability (POA) 
Possession, Ownership, Availability (POA), is a method, notation and ontology for modeling business 

processes focusing on value delivery, which is suitable for model-driven design of ERP and enterprise 

information systems (Scheller, Hruby, 2009, 2011). The POA model defines specific roles in a business 

process, and describes value delivery as flows of possession, ownership and availability of resources 

between the roles, as well as deposits and withdrawals from the roles’ repositories. The concepts of 

possession and ownership correspond to the same concepts in legal systems, and enable constructing the 

chart of accounts and balance sheet of an economic entity. Availability determines the production-

possibility frontier of economic entities in the network.  

«relaxed role» Customer

«possession»

«ownership»

«availability»

Cash

«ownership»

«availability» 

Transport Service

«possession» 

Transport Service

«possession»

«ownership»

«availability»

Transport Service

«ownership»

«availability» 

Transport Service

«possession»

«ownership»

«availability»

Cash

«activity»

Purchase ticket

«activity»

Travel

«repository»

Cash

«repository»

Ticket

«ownership»

«availability»  

Transport Service

«relaxed role»

Railroad Operator

 

Figure 102 - Example of a POA Model 

 



 134  

As the POA concepts can be mapped to the accounting concepts, the POA model can be used for 

verifying consistency between an existing accounting system and the business process model. The 

primary purpose of the POA model is specification of an executable, platform-independent model as 

described in the OMG model-driven architecture, from which accounting and enterprise information 

systems can be generated.  

Figure 102, above, depicts value delivery between a Customer and a Railroad operator, where Ticket 

represents a repository of availability and ownership of Transport Service. The Purchase ticket activity 

represents an exchange of Cash for availability and ownership of Transport service. The Travel activity 

represents receipt of possession of Transport Service, settlement of Customer’s claim, and consumption 

of the service. Table 7 outlines the relationships between the POA concepts and the VDML concepts. 

Table 7 - Mapping of POA Concepts to VDML Concepts 

VDML Concept POA Concept Remarks 

Activity Activity Definitions are compatible.  

Value proposition Availability In POA, availability is defined as the conditional right to 

possess a resource. Depending on the condition, 

availability can represent anything from proposal to 

binding contract. 

Collaboration Business process Definitions are compatible. In POA, a business process 

represents a description of how roles interact. Both in 

POA and in VDML the boundary of a network of roles 

and activities is a collaboration whereas an activity 

describes work of a single role within the collaboration.  

Deliverable flow  

(Store) 

Deposit and 

withdrawal  

Definitions are compatible.  

Deliverable flow  

(Role) 

Flow Definitions are compatible. In POA, flow represents 

transfer of possession, ownership or availability of 

resources from one role to another. In VDML, the 

deliverable, represented as a Business Item, can be 

defined as a transfer of possession, ownership or 

availability. 

Intangible Intangible Definitions are the same.  

Store Repository Definitions are the compatible. Like in VDML, 

repositories can be physical, such as warehouse, or 

abstract entities, such as debt. Repositories of availability 

and ownership (but not possession) may have negative 

value. 

Role Role Definitions are compatible. In POA, a role can be marked 

as relaxed, meaning that the model does not have to 

specify how the role obtained the consumed and used 

resources. In VDML, roles are relaxed by default.  

Tangible Tangible Definitions are the same. In POA, intangibility is a 

property of a resource. 



 135  

Pool Usage In POA usage represents resources required by an 

activity, but without being consumed, such as usage of 

tools or usage of information.   In VDML this is a Pool (a 

specialization of Store) managing a reusable resource. 

Value Value and Minibudget Definitions are compatible.  

 

VDML Support for BMM Strategic Planning 
The OMG Business Motivation Model (BMM) defines a framework for the capture of strategic planning 

information.  This framework reflects widely accepted strategic planning techniques.  The resulting 

strategic plans define requirements for business changes, but there remains a significant gap between 

these requirements and the realities of implementation.  VDML (Value Delivery Modeling Language) can 

help bridge this gap through a more rigorous specification of the current state of the business and the 

future, desired state.   

In this article, I will begin with a brief overview of BMM and then discuss the application of VDML to 

further detail and refine the strategy and to support transformation planning and management.  This 

discussion is not intended as a standard method, but illustrates how VDML can be used to improve the 

discipline and rigor of strategic planning and transformation. 

Overview of BMM 

The diagram, below, is an abstraction of the Business Motivation Model (BMM) taken from the OMG 

specification.  We will briefly discuss the Means and Ends that represent a strategic plan.  Influencers and 

Assessment are elements of the strategic planning process that provide input for development and 

refinement of the plan, but they are not, per se, elements of a strategic plan. 

End 

The End contains elements that define the desired future characteristics of the enterprise including the 

Vision and Desired Result.  A strategic plan, at the most abstract level, is expressed as a Vision of what 

the enterprise wants to be and how it wants to be perceived.  This is complementary to the Mission, 

below.   

The desired result consists of Goals and Objectives.  A goal is a long-term, qualitative result that the 

enterprise may already be pursuing or that may be advanced as a result of a business challenge or 

opportunity.  It defines a purpose for the strategy.  Objectives are specific, measurable results to be 

achieved by a strategy, and they support enterprise goals.  While there may be many measures of 

performance, objectives focus on selected, key measurements that reflect progress toward the strategy and 

goals from a management and investor perspective.   

Means 

The Means contains elements that describe how the future state of the enterprise will be achieved based 

on the Mission, Course of Action and Directives.  The Mission expresses why the enterprise exists—what 

it wants to accomplish.  Successful pursuit of the Mission should support realization of the Vision. 



 136  

A course of action is the approach to implementation of the Mission in pursuit of the Goals and 

Objectives.  It consists of Strategy and Tactics.  A strategy defines how the mission will be pursued and 

objectives will be achieved.  In conventional strategic planning, it is an abstract description of how the 

enterprise will operate in the future.  Typically, there will be multiple aspects to a strategy, potentially 

representing the integration of different ideas.  Tactics are incremental changes to the state of the 

enterprise that lead to the desired future state required by the Strategy.  The distinction between strategy 

and tactics is somewhat subjective.  Tactics will focus on resolving particular problems and steps toward 

implementing related changes.   

Directives are the business policies and business rules that are to be incorporated in the future state of the 

enterprise.  Policies are statements of business operating requirements.  Business rules define operating 

criteria or constraints in specific circumstances.  Business rules implement business policies. 

-    

Figure 103 - Overview of BMM 

 

 

 

 



 137  

Application of VDML 

VDML does not address all aspects of a business transformation.  I expect that VDML will be used to 

support strategic planning and transformation, program management for the operations and capabilities of 

the business.  It will be complemented by related efforts such as development of policies, analysis and 

development of markets, design of incentives and development of contractual relationships.   

 

Figure 104 - Strategic planning process 

The basis for consideration of changes is a VDML As-Is model.  This represents the current state of the 

business and will contain measurements reflecting current business operations.  It provides a context for 

understanding problems and assessing solutions. 

1. Model
Alternative 

Implementations

3. Define
implementation

Phases

2. Select 
from

Alternatives

6. 
Implement 
the Phase

7. Evaluate
Objectives

5. Define 
Phase 

Objectives

4. Model 
Next Phase 

To-Be

Models of alternatives

Selected model with identified changes

Schedule of changes

To-Be model of next phase

Selected objectives

Updated As-Is model

Idea

Status

Repeat for each phase



 138  

An idea is a potential strategy at an inspirational stage of development.  When that idea is refined, 

validated and accepted, it becomes a strategy (or a component of a more complex strategy). We start with 

consideration of one idea to improve the business.    

The diagram, below, depicts steps of development of an idea through transformation of the business.  We 

will discuss each of these steps in the paragraphs that follow. 

Step 1 involves consideration of alternative approaches to implementation of an idea under consideration.  

Each alternative should be modeled as a VDML To-Be model.  The VDML model will support analysis 

of the idea to define a cohesive impact on the organization, capabilities, activities, resources, value 

contributions and value propositions, potentially including business partners.   

Step 2 involves selection of the preferred alternative.  The To-Be model provides the basis for estimating 

activity value contributions as a result of the changes along with their impact on value propositions.  It 

also provides the basis for estimation of transformation costs and duration.   

In Step 3, VDML will provide the basis for planning the work of transformation.  The changes identified 

in step 2, above, must be organized into implementation phases.  Each phase will have a package of 

changes to be implemented together.  Some changes may be dependent on others—the VDML deliverable 

flows will help identify these dependencies.  Each phase should achieve implementation of a stable 

business state that can be measured.  If possible, each phase should yield business benefit. 

Step 4 is applied prior to each phase.  A To-Be model is developed or refined for the next phase.  The To-

Be model incorporates the activities, capabilities and resources to be developed in that phase.  This, in 

turn, identifies the organization units responsible for the changed business operations as well as the 

organization units of related activities that will require collaboration and coordination. 

In Step 5, objectives are developed for the next phase based on the To-Be model and the transformation 

plan.  The phase To-Be model includes measurements for the expected value contributions of activities 

that are affected by the transformation.  Changes to value contributions for each affected activity will be 

targets for performance by the organization unit that provides the supporting capability.  The impact on 

aggregated values will be targets for the overall undertaking for the enterprise or the targeted line(s) of 

business.  

Step 6 involves doing the work of transformation.  Each phase may be managed as a separate project with 

a detailed plan.  The project must address all aspects of the transformation for that phase including 

changes in products, technology, organization, personnel, facilities, information systems, and activity 

inputs and deliverables.  Some aspects are beyond the scope of a VDML model, but the VDML model 

will help identify them. 

At the end of each phase, an As-Is model is developed in Step 7 as a new baseline.  This model should be 

very similar to the To-Be model for the phase, but the measurements are actual value measurements.  

These measurements are compared to the To-Be expected value measurements to evaluate success of the 

phase.     

 



 139  

Continuous transformation 

In the real world, enterprises do not focus on the implementation of one idea at a time.  As some ideas are 

being implemented, other ideas will emerge.  These new ideas will affect some of the same business 

elements undergoing transformation.  Some ideas will be completed while work on other ideas remains to 

be done.  The following paragraphs extend the above transformation steps to reflect on-going, continuous 

transformation for implementation of multiple ideas.   

In Steps 1 and 2, a new idea may be evaluated and change requirements identified based on the current 

As-Is model as discussed, above, but the overall evaluation should also consider changes already planned 

for other ideas that affect some of the same business elements.   

In step 3, the changes for the new idea must be reconciled with the To-Be models of pending phases of 

the current strategy, and the program plan must be updated to reflect these changes and align phases.   

In Step 4, based on the alignment of new changes to pending changes, a To-Be model must be developed 

or adjusted for at least the next phase.   

In Step 5, to the extent the next phase is expected to achieve different results with the newest idea, it will 

be necessary to reconsider which value measurements are appropriate objectives for that phase. 

Step 6 involves completion of the current phase, potentially with changes for multiple ideas.  In a 

continuous transformation environment, implementation of some ideas may be completed while work on 

other ideas continues.   

Step 7 involves evaluation of phase objectives at the end of each phase as well as the end objectives for 

completed ideas.     

Summary 

The primary contributions of VDML to strategic planning involve support for Goals, Strategies, 

Objectives and Tactics   

A VDML To-Be model provides the measurements and value propositions of an idea implementation for 

consideration of its contributions toward goals.  The VDML model for a particular implementation 

becomes a detailed strategy.  It provides detail for planning and evaluation of the transformation plan.  

Measurements of the To-Be model and the transformation plan become the basis for objectives for 

transformation phases and completion of strategies.  Phases of the transformation plan may be considered 

Tactics.   

Application of VDML will bring a change to the way strategic planning and business transformation are 

performed.  Not only will it enable better planning and monitoring, but it will enable more effective 

management of complex and multi-faceted transformations needed to keep up with rapid changes of 

business and technology. 



 140  

VDML Support for Balanced Scorecard and Strategy Map 

The Balanced Scorecard (BSC) and Strategy Map (SM) are well-known, abstract models for structuring 

business transformation objectives.  The analysis of objectives helps refine a strategic plan, and the 

resulting objectives provide a basis for continuing assessment of progress. 

BSC/SM objectives represent desired changes to the state of the business—how changes to the 

design/operation of the business will achieve improvements.  Thus the changes represented by BSC/SM 

objectives represent the difference between VDML As-Is and To-Be models.   

The BSC defines four perspectives that classify objectives: (1) Learning and Growth, (2) Internal, (3) 

Customer, and (4) Financial.  This classification drives a broader analysis starting with the development 

of capabilities (Learning and Growth), through development of internal methods and processes (Internal), 

to delivery of customer value (Customer), and finally to enterprise success and sustainability (Financial). 

The Strategy Map introduces causal relationships—some objectives depend on achievement of other 

objectives.  An internal process will not be successful without the capabilities that support it (e.g., people, 

machines, knowhow). 

A VDML model represents the current or future state (sometimes the past) of the business and associated 

operating measurements.  A model could involve multiple lines of business and multiple value streams.  

VDML models can extend the BSC/SM analysis and support more robust transformation planning and 

assessment.  The diagram, below, depicts this. 

 

Figure 105 - VDMLmodels for BSC/SM 

So a VDML To-Be model can represent the improvements in performance and value creation if the 

strategy is successful.  As the basis for objectives, these To-Be measurements must be compared to 

corresponding measurements in an As-Is (current state) model.  The As-Is model will change as the 

transformation progresses.  If the transformation goes as planned, the As-Is model will become the same 

as the To-Be model (transformation complete). 



 141  

VDML can represent many of the measurements of interest for the BSC/SM objectives, so a BSC/SM 

objective may obtain its target measurement from the To-Be model and its current measurement from the 

As-Is model.   

VDML can represent objectives of the BSC Financial Perspective as As-Is and To-Be value proposition 

measurements and market segment forecasts.  However, VDML does not provide support for the 

development of these market forecasts.  For example, profit is essentially price minus cost.  VDML 

supports cost detail, but price is a management decision based on market analysis.  Market share is a 

forecast based on price and other factors including future competition.  VDML can capture those 

measurements, but does not provide support for market analysis.  

Some measurements require more extensive analysis and mapping.  For example, if a new capability is 

needed, the need is represented by the absence of the capability in the As-Is model.  The objective 

measurement is essentially binary—it is either there or it isn’t.  That’s not very useful for BSC/SM.  We 

can refine this if there is an appropriate measure of progress.  For example, if the capability requires 

skilled people, we might represent the need with a VDML store of people supporting the capability in the 

To-Be model.  However, the current progress is then just a measurement reported by the training and 

hiring effort of the transformation.  If we were to create a place for these measurements in the As-Is 

model, that would be outside the scope of the As-Is model since it would not represent the current 

operation of the business. 

From a VDML perspective, the causal relationships of Strategy Maps (i.e., dependencies between 

objectives) are of six different types: (1) changes to enterprise capabilities (i.e., “capital” in Learning and 

Growth) that are necessary for implementation of Internal Perspective value stream changes, (2) changes 

to capabilities that increase customer value (Customer Perspective) such as adoption of an advanced 

technology, (3) changes to capabilities that improve investor value (Financial Perspective) such as 

development of intellectual property, (4)  changes to a value stream (potentially involving multiple 

activity changes)  that affect activity contributions to customer value (Customer Perspective), (5) changes 

to the value stream that improve investor value (Financial Perspective) such as cost reductions, and (6) 

changes in customer satisfaction levels that drive market changes reflected in investor value (Financial 

Perspective).   

While these are all supported by VDML, they require two VDML models—an As-Is model and a To-Be 

model.  Type (1) can be observed by a change in capabilities (new or modified) between the As-Is and 

To-Be models.  Type (2) can be observed as value stream changes that improve desired customer value 

proposition measurements.  Type (3) requires human recognition of the value investors will place on 

improved enterprise capabilities.  Type (4) can be observed by tracing the sources of changes to the 

customer values in the To-Be model to the relevant customer value contributions that are improved from 

the As-Is model.  Type 5 can be observed from changes in value contributions (such as cost reductions) 

that have a direct impact on investor value.  Type 6 is based on changes in customer value propositions 

but it requires market insight and feedback regarding trends and competition to determine the impact on 

investor value.  Many of these causal relationships may be based on VDML deliverable flows, but rather 

they represent differences between VDML models.   



 142  

In a substantial transformation, there must be phases of implementation.  Without objectives (or 

intermediate target objectives) for phases, management would have difficulty assessing progress on a 

long-duration project with multiple components.  Each phase should be represented by a VDML model 

for the expected state of the business at the end of the phase.  As the transformation progresses, a series of 

As-Is models would be created to represent the new, current state of the business. The As-Is model 

evolves toward the To-Be model so that measurements in the current state depict progress toward To-Be 

targets as depicted in the diagram, below.   

The BSC/SM model then becomes a series of phase models with As-Is and To-Be supporting models to 

define intermediate targets—see the diagram, below.  The To-Be VDML model of a phase becomes the 

expected As-Is model of the next phase, and the BSC/SM short-term, phase model represents the 

objectives of the current phase.  The overall BSC/SM model can be derived from the initial As-Is model 

and the final To-Be model.  

 

Figure 106 - Modeling transformation phases 

While the full BSC/SM model can be stable (unless the end state of the business evolves), the current 

phase BSC/SM model will be incrementally based on new versions of the As-Is model as the 

transformation progresses, and it will be based on new To-Be models as new phases are started. 

In summary, VDML can provide significant value in validating the strategy, setting and evaluating 

objectives that identify causal relationships and developing the transformation plan.  However, the 

relationships between the BSC/SM objectives and the VDML models are diverse and require incremental 

alignment with new versions of VDML models.  Development of needed modeling techniques is left for 

VDML implementers to explore. 

VDML Relationship to BPMN 
This sub-clause addresses the relationship of VDML to BPMN (Business Process Model and Notation).  

While VDML and BPMN represent some similar concepts, they address different business problems and 

areas of concern.  They provide different viewpoints—they address the concerns of different stakeholders. 

The intent of VDML is to address the needs of business leaders to define, manage and transform the 

design of the enterprise.  This requires a broad perspective to incorporate multiple aspects of the 

enterprise.  The focus of BPMN is defining and managing repeatable, reliable processes with an emphasis 



 143  

on automation.  The focus is much more specific but much deeper in detail addressing many exceptions 

and variations.  The community of concern is primarily managers, business analysts and systems 

developers closer to the business operations.  In terms of the draft MDA Guide, VDML supports a 

business model and BPMN supports a logical system model. 

The primary mode of application of VDML is “forward engineering” as described by the draft MDA 

Guide. This involves development of a business solution by starting at an abstract level of design and 

developing in stages of increasing detail.  VDML enables business leaders to define and agree upon a 

high-level business design that can then be used to guide more detailed solutions that may be delegated to 

multiple business units.  BPMN represents a primary tool for development of the next level of detail. 

However, not all applications of VDML fit that pattern.  The manner in which VDML is used and its 

relationship to BPMN will vary depending on the nature of the business problem being solved.  A number 

of different modes are discussed in the following paragraphs.  A paper that explores the relationship 

between VDML and BPMN in much more detail is available as OMG document number BMI/2013-11-

01. 

Business network analysis 

VDML Business Networks models can be developed to represent relationships with customers, suppliers 

and others, typically in the context of certain collaborative activities such as a line of business, product 

development relationships, regulatory compliance relationships, etc.  The collaboration structure and 

exchange of deliverables helps analysis focus on both tangible and intangible deliverables and the less 

obvious but important exchanges.  This may lead to changes in business relationships, clarification of 

roles and deliverables, and development of improved internal business processes. 

Customer value analysis 

Customer value analysis will be based on value stream analysis.  A basic value proposition must be 

defined to identify values of concern to a customer or customer community.  Then the value proposition 

must be linked to collaboration and activity value contributions.  In the absence of an existing VDML 

model, development of the value stream will typically be performed top-down, considering high-level 

activities or stages of the business and breaking these down into a hierarchy of activities and deliverable 

flows.  The values of a customer value proposition are traced back up the value stream to identify sources 

of value and potential improvements.   The level of detail will be driven by the level of confidence in the 

measurements and the need to drive down to specific capabilities and responsible organizations. This 

could start with BPMN processes, but typically this requires digging through too much detail.  The 

analysis will lead to focused consideration of process improvements (BPMN). 

The analysis of customer value will lead to identification of activities might be improved to improve 

customer value.  This may also lead to a “capability map” that provides a visual breakdown of the 

capabilities required by the activities with highlights to identify those capabilities that need improvement. 

Capability analysis 

Capability analysis can go beyond the identification of critical capabilities in a value stream.  In a large 

enterprise, multiple product lines or lines of business may require some of the same capabilities.  



 144  

Capability analysis should identify similar capabilities, consider ways they can cooperate to improve their 

performance, and assess the potential to consolidate for economies of scale.  This may drive process 

improvements or development of processes for a shared capability to meet the needs of multiple lines of 

business. 

When capabilities are consolidated as shared services, there is a need to understand their performance in 

multiple contexts.  Changing a capability for one line of business could adversely affect another.  In 

addition, analysis of investments in improvement of capabilities should consider how each capability 

affects all of its uses to provide an enterprise-level perspective on allocation of investments.  The 

implementation of improvements will likely involve process improvements based on the capability 

analysis. 

New product/LOB analysis 

Development of business operations for a new product or line of business should involve leveraging 

existing capabilities.  VDML supports modeling the business at an level of abstraction that identifies 

capability requirements without requiring a lot of detailed process analysis.  Capability requirements can 

be developed at an appropriate level of detail for strategic planning, to identify existing capabilities and 

any changes to their requirements along with requirements for new capabilities.  This provides a 

framework for more detailed analysis, such as process modeling, to focus on the areas the need 

development.  Business leaders can more quickly assess both the cost and time required to realize the 

needed production capability and make an informed business decision on the potential success of the 

product. 

Merger or acquisition 

Mergers and acquisitions, if they are to realize any synergy, require some consolidation of capabilities.  

VDML models can be used during due diligence to get a better understanding of the similarities and 

differences of the enterprises and the potential for sharing capabilities.  While the enterprises may have 

similar products, that does not mean they have similar ways of doing business. 

Here a transformation of BPMN to VDML, assuming processes are specified with BPMN, may be an 

expeditious way to develop VDML models for comparison.  If transformation is not possible, or if 

starting at business processes is too big an undertaking, VDML can still support value stream models at 

levels of detail appropriate to confirm similarities or expose differences so that much of the modeling 

does not reach the business-process level of detail.  These models will provide the basis for consideration 

of to-be models to realize expectations of synergy in the merger. 

Strategic transformation 

Strategic transformation potentially involves substantial change to the way the business operates.  Starting 

with business processes will bias the result by making it difficult to see the forest for the trees.  VDML 

supports a higher level view of the business where sufficient detail can be developed to realize a 

meaningful assessment of the scope and duration of the change, the performance expectations and 

competitive position as well as the framework for organization of initiatives and development of business 

processes and systems.  Multiple VDML models can be used to define stages of transformation and define 

incremental change rather than one, long-term undertaking with no benefit (or failure) until the end. 



 145  

Accountability 

VDML provides the linkage of customer value to contributing activities, to use of capabilities and to 

responsible organizations so that organizations can be held accountable for poor results and recognized 

for important improvements.  VDML will drive meaningful performance measurement, and support 

analysis that starts from a high level of abstraction and expands levels of detail to focus on a specific area 

for improvement.  It will also help clarify expectations and responsibility for shared capabilities. 

  



 146  

Annex C: Use Cases 
(Informative) 

 

Two substantial use cases were developed in support of the VDML development effort.  These are 

independent documents that are available on the OMG server: Note that these documents are not 

normative.  They were developed before the metamodel and notation were finalized and may include 

some inconsistencies with the final specification. 

Manufacturing use case: http://www.omg.org/cgi-bin/doc?bmi/2012-11-10  

Healthcare use case: http://www.omg.org/cgi-bin/doc?bmi/2012-11-11 

http://www.omg.org/cgi-bin/doc?bmi/2012-11-10
http://www.omg.org/cgi-bin/doc?bmi/2012-11-11

